Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(44): e2208183119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36279440

RESUMEN

The origin of methylmercury in pelagic fish remains unclear, with many unanswered questions regarding the production and degradation of this neurotoxin in the water column. We used mercury (Hg) stable isotope ratios of marine particles and biota to elucidate the cycling of methylmercury prior to incorporation into the marine food web. The Hg isotopic composition of particles, zooplankton, and fish reveals preferential methylation of Hg within small (< 53 µm) marine particles in the upper 400 m of the North Pacific Ocean. Mass-dependent Hg isotope ratios (δ202Hg) recorded in small particles overlap with previously estimated δ202Hg values for methylmercury sources to Pacific and Atlantic Ocean food webs. Particulate compound specific isotope analysis of amino acids (CSIA-AA) yield δ15N values that indicate more-significant microbial decomposition in small particles compared to larger particles. CSIA-AA and Hg isotope data also suggest that large particles (> 53 µm) collected in the equatorial ocean are distinct from small particles and resemble fecal pellets. Additional evidence for Hg methylation within small particles is provided by a statistical mixing model of even mass-independent (Δ200Hg and Δ204Hg) isotope values, which demonstrates that Hg within near-surface marine organisms (0-150 m) originates from a combination of rainfall and marine particles. In contrast, in meso- and upper bathypelagic organisms (200-1,400 m), the majority of Hg originates from marine particles with little input from wet deposition. The occurrence of methylation within marine particles is supported further by a correlation between Δ200Hg and Δ199Hg values, demonstrating greater overlap in the Hg isotopic composition of marine organisms with marine particles than with total gaseous Hg or wet deposition.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Isótopos de Mercurio/análisis , Mercurio/análisis , Organismos Acuáticos/metabolismo , Neurotoxinas/metabolismo , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Peces/metabolismo , Isótopos/metabolismo , Agua/metabolismo , Aminoácidos/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34373333

RESUMEN

Earth's early atmosphere witnessed multiple transient episodes of oxygenation before the Great Oxidation Event 2.4 billion years ago (Ga) [e.g., A. D. Anbar et al., Science 317, 1903-1906 (2007); M. C. Koehler, R. Buick, M. E. Barley, Precambrian Res. 320, 281-290 (2019)], but the triggers for these short-lived events are so far unknown. Here, we use mercury (Hg) abundance and stable isotope composition to investigate atmospheric evolution and its driving mechanisms across the well-studied "whiff" of O2 recorded in the ∼2.5-Ga Mt. McRae Shale from the Pilbara Craton in Western Australia [A. D. Anbar et al., Science 317, 1903-1906 (2007)]. Our data from the oxygenated interval show strong Hg enrichment paired with slightly negative ∆199Hg and near-zero ∆200Hg, suggestive of increased oxidative weathering. In contrast, slightly older beds, which were evidently deposited under an anoxic atmosphere in ferruginous waters [C. T. Reinhard, R. Raiswell, C. Scott, A. D. Anbar, T. W. Lyons, Science 326, 713-716 (2009)], show Hg enrichment coupled with positive ∆199Hg and slightly negative ∆200Hg values. This pattern is consistent with photochemical reactions associated with subaerial volcanism under intense UV radiation. Our results therefore suggest that the whiff of O2 was preceded by subaerial volcanism. The transient interval of O2 accumulation may thus have been triggered by diminished volcanic O2 sinks, followed by enhanced nutrient supply to the ocean from weathering of volcanic rocks causing increased biological productivity.

3.
Anal Bioanal Chem ; 415(5): 759-774, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36472636

RESUMEN

Isotope ratios of methylmercury (MeHg) within organisms can be used to identify sources of MeHg that have accumulated in food webs, but these isotopic compositions are masked in organisms at lower trophic levels by the presence of inorganic mercury (iHg). To facilitate measurement of MeHg isotope ratios in organisms, we developed a method of extracting and isolating MeHg from fish and aquatic invertebrates for compound-specific isotopic analysis involving nitric acid digestion, batch anion-exchange resin separation, and pre-concentration by purge and trap. Recovery of MeHg was quantified after each step in the procedure, and the average cumulative recovery of MeHg was 93.4 ± 2.9% (1 SD, n = 28) for biological reference materials and natural biota samples and 96.9 ± 1.8% (1 SD, n = 5) for aqueous MeHgCl standards. The amount of iHg impurities was also quantified after each step, and the average MeHg purity was 97.8 ± 4.3% (1 SD, n = 28) across all reference materials and natural biota samples after the final separation step. Measured MeHg isotopic compositions of reference materials agreed with literature values obtained using other MeHg separation techniques, and MeHg isotope ratios of aqueous standards, reference materials, and natural biota samples were reproducible. On average, the reproducibility associated with reference material process replicates (2 SD) was 0.10‰ for δ202MeHg and 0.04‰ for Δ199MeHg. This new method provides a streamlined, reliable technique that utilizes a single sample aliquot for MeHg concentration and isotopic analysis. This promotes a tight coupling between MeHg concentration, %MeHg, and Hg isotopic composition, which may be especially beneficial for studying complex food webs with multiple isotopically distinct sources of iHg and/or MeHg.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Compuestos de Metilmercurio/análisis , Ácido Nítrico/análisis , Isótopos de Mercurio/análisis , Reproducibilidad de los Resultados , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Mercurio/análisis , Cadena Alimentaria , Isótopos/análisis , Digestión , Aniones/análisis
4.
Proc Natl Acad Sci U S A ; 117(12): 6453-6462, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32152113

RESUMEN

Hunter-gatherer exchange networks dampen subsistence and reproductive risks by building relationships of mutual support outside local groups that are underwritten by symbolic gift exchange. Hxaro, the system of delayed reciprocity between Ju/'hoãn individuals in southern Africa's Kalahari Desert, is the best-known such example and the basis for most analogies and models of hunter-gatherer exchange in prehistory. However, its antiquity, drivers, and development remain unclear, as they do for long-distance exchanges among African foragers more broadly. Here we show through strontium isotope analyses of ostrich eggshell beads from highland Lesotho, and associated strontium isoscape development, that such practices stretch back into the late Middle Stone Age. We argue that these exchange items originated beyond the macroband from groups occupying the more water-stressed subcontinental interior. Tracking the emergence and persistence of macroscale, transbiome social networks helps illuminate the evolution of social strategies needed to thrive in stochastic environments, strategies that in our case study show persistence over more than 33,000 y.


Asunto(s)
Cáscara de Huevo/química , Red Social/historia , Isótopos de Estroncio/análisis , África Austral , Animales , Población Negra/historia , Cultura , Historia Antigua , Humanos , Apoyo Social , Struthioniformes
5.
Proc Natl Acad Sci U S A ; 117(47): 29292-29298, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33199629

RESUMEN

Mercury isotopic compositions of amphipods and snailfish from deep-sea trenches reveal information on the sources and transformations of mercury in the deep oceans. Evidence for methyl-mercury subjected to photochemical degradation in the photic zone is provided by odd-mass independent isotope values (Δ199Hg) in amphipods from the Kermadec Trench, which average 1.57‰ (±0.14, n = 12, SD), and amphipods from the Mariana Trench, which average 1.49‰ (±0.28, n = 13). These values are close to the average value of 1.48‰ (±0.34, n = 10) for methyl-mercury in fish that feed at ∼500-m depth in the central Pacific Ocean. Evidence for variable contributions of mercury from rainfall is provided by even-mass independent isotope values (Δ200Hg) in amphipods that average 0.03‰ (±0.02, n = 12) for the Kermadec and 0.07‰ (±0.01, n = 13) for the Mariana Trench compared to the rainfall average of 0.13 (±0.05, n = 8) in the central Pacific. Mass-dependent isotope values (δ202Hg) are elevated in amphipods from the Kermadec Trench (0.91 ±0.22‰, n = 12) compared to the Mariana Trench (0.26 ±0.23‰, n = 13), suggesting a higher level of microbial demethylation of the methyl-mercury pool before incorporation into the base of the foodweb. Our study suggests that mercury in the marine foodweb at ∼500 m, which is predominantly anthropogenic, is transported to deep-sea trenches primarily in carrion, and then incorporated into hadal (6,000-11,000-m) food webs. Anthropogenic Hg added to the surface ocean is, therefore, expected to be rapidly transported to the deepest reaches of the oceans.


Asunto(s)
Anfípodos/química , Peces , Compuestos de Metilmercurio/análisis , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Animales , Biota , Monitoreo del Ambiente , Cadena Alimentaria , Sedimentos Geológicos/química , Isótopos de Mercurio/análisis , Océano Pacífico
6.
Environ Sci Technol ; 54(17): 10502-10513, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32786593

RESUMEN

The atmosphere is a significant global reservoir for mercury (Hg) and its isotopic characterization is important to understand sources, distribution, and deposition of Hg to the Earth's surface. To better understand Hg isotope variability in the remote background atmosphere, we collected continuous 12-h Hg0 samples for 1 week from two high elevation sites, Camp Davis, Wyoming (valley), and Mount Bachelor, Oregon (mountaintop). The samples collected at Camp Davis displayed strong diel variation in δ202Hg values of Hg0, but not in Δ199Hg or Δ200Hg values. We attribute this pattern to nightly atmospheric inversions trapping Hg in the valley and the subsequent nighttime uptake of Hg by vegetation, which depletes Hg from the atmosphere. At Mount Bachelor, the samples displayed diel variation in both δ202Hg and Δ199Hg, but not Δ200Hg. We attribute this pattern to differences in the vertical distribution of Hg in the atmosphere as Mount Bachelor received free tropospheric air masses on certain nights during the sampling period. Near the end of the sampling period at Mount Bachelor, the observed diel pattern dissipated due to the influence of a nearby forest fire. The processes governing the Hg isotopic fractionation differ across sites depending on mixing, topography, and vegetation cover.


Asunto(s)
Mercurio , Atmósfera , Monitoreo del Ambiente , Isótopos , Mercurio/análisis , Isótopos de Mercurio/análisis , Oregon , Estados Unidos , Wyoming
7.
J Phys Chem A ; 124(14): 2842-2853, 2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32126771

RESUMEN

The photochemical reduction of Hg(II) is an important pathway in the environmental Hg cycle because it competes with Hg methylation and potentially limits the formation of bioaccumulative methylmercury. Hg stable isotope systematics have proven to be an effective tool for investigating the transport, transformation, and bioaccumulation of Hg. The dominant cause of mass independent isotope fractionation (MIF) of Hg in nature is the photochemical reduction of various species of Hg(II). However, it is difficult to fully interpret Hg stable isotope signatures due to the lack of mechanistic information about which Hg compounds are susceptible to MIF and why. This study investigates Hg isotope fractionation during the photochemical reduction of Hg(II) complexed to organic ligands, which are representative of the available binding sites in natural dissolved organic matter. The photochemical reduction of Hg(II) in the presence of cysteine resulted in both negative and positive MIF in residual Hg(II), where the sign depended on pH and dissolved oxygen level. In the presence of serine, either nuclear volume or magnetic isotope effects were observed depending on the wavelength of light and the extent of Hg(II) complexation by serine. In the presence of ethylenediamine, MIF was negative. Our Hg stable isotope results suggest that MDF and MIF are induced at different steps in the overall photochemical reduction reaction and that MIF does not depend on the rate-determining step but instead depends on photophysical aspects of the reaction such as intersystem crossing and hyperfine coupling. The behavior of Hg isotopes reported here will allow for a better understanding of the underlying reaction mechanisms controlling the Hg isotope signatures recorded in natural samples.

8.
Environ Sci Technol ; 53(4): 1853-1862, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30371069

RESUMEN

Mercury (Hg) stable isotope fractionation has been widely used to trace Hg sources and transformations in the environment, although many important fractionation processes remain unknown. Here, we describe Hg isotope fractionation during the abiotic dark oxidation of dissolved elemental Hg(0) in the presence of thiol compounds and natural humic acid. We observe equilibrium mass-dependent fractionation (MDF) with enrichment of heavier isotopes in the oxidized Hg(II) and a small negative mass-independent fractionation (MIF) owing to nuclear volume effects. The measured enrichment factors for MDF and MIF (ε202Hg and E199Hg) ranged from 1.10‰ to 1.56‰ and from -0.16‰ to -0.18‰, respectively, and agreed well with theoretically predicted values for equilibrium fractionation between Hg(0) and thiol-bound Hg(II). We suggest that the observed equilibrium fractionation was likely controlled by isotope exchange between Hg(0) and Hg(II) following the production of the Hg(II)-thiol complex. However, significantly attenuated isotope fractionation was observed during the initial stage of Hg(0) oxidation by humic acid and attributed to the kinetic isotope effect (KIE). This research provides additional experimental constraints on interpreting Hg isotope signatures with important implications for the use of Hg isotope fractionation as a tracer of the Hg biogeochemical cycle.


Asunto(s)
Mercurio , Fraccionamiento Químico , Isótopos , Isótopos de Mercurio , Compuestos de Sulfhidrilo
9.
Environ Sci Technol ; 53(5): 2434-2440, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30727732

RESUMEN

Compared to the extensive research on aquatic ecosystems, very little is known about the sources and trophic transfer of methylmercury (MeHg) in terrestrial ecosystems. In this study, we examine energy flow and trophic structure using stable carbon (δ13C) and nitrogen (δ15N) isotope ratios, respectively, and MeHg levels in basal resources and terrestrial invertebrates from four temperate forest ecosystems. We show that MeHg levels in biota increased significantly ( p < 0.01) with δ13C and δ15N at all sites, implying the importance of both microbially processed diets (with increased δ13C) and trophic level (with increased δ15N) at which organisms feed, on MeHg levels in forest floor biota. The trophic magnification slopes of MeHg (defined as the slope of log10MeHg vs δ15N) for these forest floor food webs (0.20-0.28) were not significantly different ( p > 0.05) from those observed for diverse temperate freshwater systems (0.24 ± 0.07; n = 78), demonstrating for the first time the nearly equivalent efficiencies with which MeHg moves up the food chain in these contrasting ecosystem types. Our results suggest that in situ production of MeHg within the forest floor and efficient biomagnification both elevate MeHg levels in carnivorous invertebrates in temperate forests, which can contribute to significant bioaccumulation of this neurotoxin in terrestrial apex predators.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Ecosistema , Peces , Cadena Alimentaria , Bosques
10.
Environ Sci Technol ; 52(4): 1854-1861, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29328674

RESUMEN

Stable isotope compositions of mercury (Hg) were measured in the outlet stream and in soil cores at different landscape positions in a 9.7-ha boreal upland-peatland catchment. An acidic permanganate/persulfate digestion procedure was validated for water samples with high dissolved organic matter (DOM) concentrations through Hg spike addition analysis. We report a relatively large variation in mass-dependent fractionation (δ202Hg; from -2.12 to -1.32‰) and a smaller, but significant, variation of mass-independent fractionation (Δ199Hg; from -0.35 to -0.12‰) during two years of sampling with streamflow varying from 0.003 to 7.8 L s-1. Large variations in δ202Hg occurred only during low streamflow (<0.6 L s-1), which suggest that under high streamflow conditions a peatland lagg zone between the bog (3.0 ha) and uplands (6.7 ha) becomes the dominant source of Hg in downstream waters. Further, a binary mixing model showed that except for the spring snowmelt period, Hg in streamwater from the catchment was mainly derived from dry deposition of gaseous elemental Hg (73-95%). This study demonstrates the usefulness of Hg isotopes for tracing sources of Hg deposition, which can lead to a better understanding of the biogeochemical cycling and hydrological transport of Hg in headwater catchments.


Asunto(s)
Mercurio , Ecosistema , Monitoreo del Ambiente , Isótopos , Isótopos de Mercurio , Suelo
11.
Environ Sci Technol ; 52(24): 14149-14157, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30516053

RESUMEN

Wildfires are expected to become more frequent and intensive at the global scale due to climate change. Many studies have focused on the loss of mercury (Hg) from burned forests; however, little is known about the origins, concentration, reactivity, and bioavailability of Hg in residual ash materials in postfire landscapes. We examine Hg levels and reactivity in black ash (BA, low burn intensity) and white ash (WA, high burn intensity) generated from two recent northern California wildfires and document that all ash samples contained measurable, but highly variable, Hg levels ranging from 4 to 125 ng/g dry wt. ( n = 28). Stable Hg isotopic compositions measured in select ash samples suggest that most Hg in wildfire ash is derived from vegetation. Ash samples had a highly variable fraction of Hg in recalcitrant forms (0-75%), and this recalcitrant Hg pool appears to be associated with the black carbon fraction in ash. Both BA and WA were found to strongly sequester aqueous inorganic Hg but not gaseous elemental Hg under controlled conditions. During anoxic ash incubation with natural surface water, we find that Hg in most ash samples had a minimal release and low methylation potential. Thus, the formation of wildfire ash can sequester Hg into relatively nonbioavailable forms, attenuating the potentially adverse effects of Hg erosion and transport to aquatic environments along with eroded wildfire ash.


Asunto(s)
Mercurio , Incendios Forestales , Disponibilidad Biológica , California , Bosques
14.
Environ Sci Technol ; 51(23): 13976-13984, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29132209

RESUMEN

The complex biogeochemical cycle of Hg makes identifying primary sources of fish tissue Hg problematic. To identify sources and provide insight into this cycle, we combined carbon (δ13C), nitrogen amino acid (δ15NPhe), and Hg isotope (Δ199Hg, Δ201Hg, δ202Hg) data for six species of Hawaiian marine bottomfish. Results from these isotopic systems identified individuals within species that likely fed from separate food webs. Terrestrial freshwater inputs to coastal sediments were identified as the primary source of tissue Hg in the jack species, Caranx ignobilis, which inhabit shallow marine ecosystems. Thus, coastal C. ignobilis were a biological vector transporting Hg from freshwater environments into marine ecosystems. Depth profiles of Hg isotopic compositions for bottomfish (excludung C. ignobilis) were similar, but not identical, to profiles for open-ocean pelagic fishes, suggesting that in both settings inorganic Hg, which was ultimately transformed to monomethylmercury (MeHg) and bioaccumulated, was dominantly from a single source. However, differences between pelagic fish and bottomfish profiles were attributable to mass-dependent fractionation in the benthos prior to incorporation into the food web. Results also confirmed that bottomfish relied, at least in part, on a benthic food web and identified the incorporation of deeper water oceanic MeHg sources into deeper water sediments prior to food web uptake and transfer.


Asunto(s)
Carbono , Monitoreo del Ambiente , Peces , Isótopos de Mercurio , Nitrógeno , Contaminantes Químicos del Agua , Animales , Cadena Alimentaria , Hawaii , Mercurio , Compuestos de Metilmercurio , Mosquitos Vectores
15.
Environ Sci Technol ; 51(19): 10965-10973, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28885821

RESUMEN

Historic point source mercury (Hg) contamination from industrial processes on the South River (Waynesboro, Virginia) ended decades ago, but elevated Hg concentrations persist in the river system. In an effort to better understand Hg sources, mobility, and transport in the South River, we analyzed total Hg (THg) concentrations and Hg stable isotope compositions of streambed sediments, stream bank soils, suspended particles, and filtered surface waters. Samples were collected along a longitudinal transect of the South River, starting upstream of the historic Hg contamination point-source and extending downstream to the confluence with the South Fork Shenandoah River. Analysis of the THg concentration and Hg isotopic composition of these environmental samples indicates that the regional background Hg source is isotopically distinct in both Δ199Hg and δ202Hg from Hg derived from the original source of contamination, allowing the tracing of contamination-sourced Hg throughout the study reach. Three distinct end-members are required to explain the Hg isotopic and concentration variation observed in the South River. A consistent negative offset in δ202Hg values (∼0.28‰) was observed between Hg in the suspended particulate and dissolved phases, and this fractionation provides insight into the processes governing partitioning and transport of Hg in this contaminated river system.


Asunto(s)
Mercurio/análisis , Contaminantes Químicos del Agua/análisis , Fraccionamiento Químico , Monitoreo del Ambiente , Industrias , Ríos , Suelo , Virginia
16.
Environ Sci Technol ; 51(19): 11145-11155, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28851224

RESUMEN

Atmospheric mercury (Hg) is deposited to Polar Regions during springtime atmospheric mercury depletion events (AMDEs) that require halogens and snow or ice surfaces. The fate of this Hg during and following snowmelt is largely unknown. We measured Hg, major ions, and stable water isotopes from the snowpack through the entire spring melt runoff period for two years. Our small (2.5 ha) watershed is near Barrow (now Utqiagvik), Alaska. We measured discharge, made 10 000 snow depths, and collected over 100 samples of snow and meltwater for chemical analysis in 2008 and 2009 from the watershed snowpack and ephemeral stream channel. Results show an "ionic pulse" of mercury and major ions in runoff during both snowmelt seasons, but major ion and Hg runoff concentrations were roughly 50% higher in 2008 than in 2009. Though total discharge as a percent of total watershed snowpack water equivalent prior to the melt was similar in both years (36% in 2008 melt runoff and 34% in 2009), it is possible that record low precipitation in the summer of 2007 led to the higher major ion and Hg concentrations in 2008 melt runoff. Total dissolved Hg meltwater runoff of 14.3 (± 0.7) mg/ha in 2008 and 8.1 (± 0.4) mg/ha in 2009 is five to seven times higher than that reported from other arctic watersheds. We calculate 78% of snowpack Hg was exported with snowmelt runoff in 2008 and 41% in 2009. Our results suggest AMDE Hg complexed with Cl- or Br- may be less likely to be photochemically reduced and re-emitted to the atmosphere prior to snowmelt, and we estimate that roughly 25% of the Hg in snowmelt is attributable to AMDEs. Projected Arctic warming, with more open sea ice leads providing halogen sources that promote AMDEs, may provide enhanced Hg deposition, reduced Hg emission and, ultimately, an increase in snowpack and snowmelt runoff Hg concentrations.


Asunto(s)
Monitoreo del Ambiente , Mercurio , Nieve , Alaska , Regiones Árticas , Iones
19.
Environ Sci Technol ; 50(4): 1691-702, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26789018

RESUMEN

We measured total mercury (THg) and monomethyl mercury (MMHg) concentrations and mercury (Hg) isotopic compositions in sediment and aquatic organisms from the Yuba River (California, USA) to identify Hg sources and biogeochemical transformations downstream of a historical gold mining region. Sediment THg concentrations and δ(202)Hg decreased from the upper Yuba Fan to the lower Yuba Fan and the Feather River. These results are consistent with the release of Hg during gold mining followed by downstream mixing and dilution. The Hg isotopic composition of Yuba Fan sediment (δ(202)Hg = -0.38 ± 0.17‰ and Δ(199)Hg = 0.04 ± 0.03‰; mean ± 1 SD, n = 7) provides a fingerprint of inorganic Hg (IHg) that could be methylated locally or after transport downstream. The isotopic composition of MMHg in the Yuba River food web was estimated using biota with a range of %MMHg (the percent of THg present as MMHg) and compared to IHg in sediment, algae, and the food web. The estimated δ(202)Hg of MMHg prior to photodegradation (-1.29 to -1.07‰) was lower than that of IHg and we suggest this is due to mass-dependent fractionation (MDF) of up to -0.9‰ between IHg and MMHg. This result is in contrast to net positive MDF (+0.4 to +0.8‰) previously observed in lakes, estuaries, coastal oceans, and forests. We hypothesize that this unique relationship could be due to differences in the extent or pathway of biotic MMHg degradation in stream environments.


Asunto(s)
Contaminantes Ambientales/química , Oro , Mercurio/química , Compuestos de Metilmercurio/química , Minería/métodos , Animales , California , Fraccionamiento Químico , Estuarios , Cadena Alimentaria , Lagos/química , Ríos/química , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA