Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35214565

RESUMEN

Herein, we present the syntheses of a novel coordination polymer (CP) based on the perylene-3,4,9,10-tetracarboxylate (pery) linkers and sodium metal ions. We have chosen sodium metal center with the aim of surmising the effect that the modification of the metal ion may have on the relative humidity (RH) experimental measurements of the material. We confirm the role of the ions in the functionalization of the deposited layer by modifying their selectivity towards moisture content, paving the way to the generation of sensitive and selective chemical sensors.

2.
Nanotechnology ; 29(48): 485701, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30207543

RESUMEN

In this work, we report on the fabrication and characterization of sub-300 nm electrode films based on solution-processed silver nanoparticles (AgNPs). Following the deposition of the electrode material using a scalable and homogenous spray process, the films are treated with thermal or photonic sintering to promote the coalescence of the nanoparticles and in turn decrease the resistivity of the films. After sintering, a resistivity of 63 ± 13 nΩ m is achieved for the AgNP films, which is only by a factor of four larger than the literature value for bulk silver. Both post-deposition treatments show a similar performance with regard to the achieved resistivity. However, photonic sintering avoids the need for thermal annealing at substrate temperatures of 150 °C and above. In addition, the photonic sintering process can easily be embedded in a roll-to-roll process and is extremely fast with light exposure times below 3 ms. Thus, this manufacturing technique paves the way for the use of flexible substrates in electronics. As a simple and practical application, we present the use of AgNP films for antennas operating in the 5 GHz band on flexible polyethylene terephthalate substrate. An original coplanar design is employed for the fabrication of antennas with a single conductive layer that exhibit a maximum return loss and radiation of -27 dB and 95%, respectively.

3.
Nanomaterials (Basel) ; 9(3)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901851

RESUMEN

In this article, we report on an efficient post-treatment protocol for the manufacturing of pristine single-walled carbon nanotube (SWCNT) films. To produce an ink for the deposition, the SWCNTs are dispersed in an aqueous solution with the aid of a carboxymethyl cellulose (CMC) derivative as the dispersing agent. On the basis of this SWCNT-ink, ultra-thin and uniform films are then fabricated by spray-deposition using a commercial and fully automated robot. By means of X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM), we show that the CMC matrix covering the CNTs can be fully removed by an immersion treatment in HNO3 followed by thermal annealing at a moderate temperature of 100 °C, in the ambient air. We propose that the presented protocols for the ink preparation and the post-deposition treatments can in future serve as a facile and efficient platform for the fabrication of high-quality and residual-free SWCNT films. The purity of SWCNT films is of particular importance for sensing applications, where residual-induced doping and dedoping processes distort the contributions from the sensing specimen. To study the usability of the presented films for practical applications, gas sensors are fabricated and characterized with the CNT-films as the sensing material, screen printed silver-based films for the interdigitated electrode (IDE) structure, and polyimide as a flexible and robust substrate. The sensors show a high and stable response of 11% to an ammonia (NH3) test gas, at a concentration of 10 ppm.

4.
Polymers (Basel) ; 11(5)2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067809

RESUMEN

In this work, we report on a fabrication protocol to produce fully inkjet-printed temperature sensors on a bendable polyethylene terephthalate (PET) substrate. The sensing layer is made of polymer-based Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) ink that is electrically contacted by an underlying interdigitated electrode (IDE) structure based on a silver nanoparticle (AgNP) ink. Both inks are available commercially, and no further ink processing is needed to print them using a cost-effective consumer printer with standard cartridges. The fabricated sensor modules are tested for different IDE dimensions and post-deposition treatments of the AgNP film for their response to a temperature range of 20 to 70 °C and moisture range of 20 to 90% RH (relative humidity). Attributed to the higher initial resistance, sensor modules with a larger electrode spacing of 200 µm show a higher thermal sensitivity that is increased by a factor of 1.8 to 2.2 when compared to sensor modules with a 150 µm-spacing. In all cases, the sensors exhibit high linearity towards temperature and a response comparable to state of the art.

5.
Nanomaterials (Basel) ; 8(10)2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30274162

RESUMEN

Copper nanowires (CuNWs) have increasingly become subjected to academic and industrial research, which is attributed to their good performance as a transparent electrode (TE) material that competes with the one of indium tin oxide (ITO). Recently, an environmentally friendly and aqueous synthesis of CuNWs was demonstrated, without the use of hydrazine that is known for its unfavorable properties. In this work, we extend the current knowledge for the aqueous synthesis of CuNWs by studying their up-scaling potential. This potential is an important aspect for the commercialization and further development of CuNW-based devices. Due to the scalability and homogeneity of the deposition process, spray coating was selected to produce films with a low sheet resistance of 7.6 Ω/sq. and an optical transmittance of 77%, at a wavelength of 550 nm. Further, we present a comprehensive investigation of the degradation of CuNWs when subjected to different environmental stresses such as the exposure to ambient air, elevated temperatures, high electrical currents, moisture or ultraviolet (UV) light. For the oxidation process, a model is derived to describe the dependence of the breakdown time with the temperature and the initial resistance. Finally, polymer coatings made of polydimethylsiloxane (PDMS) and polymethylmethacrylate (PMMA), as well as oxide coatings composed of electron beam evaporated silicon dioxide (SiO2) and aluminum oxide (Al2O3) are tested to hinder the oxidation of the CuNW films under current flow.

6.
Polymers (Basel) ; 10(12)2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30961338

RESUMEN

The necessity to place sensors far away from the processing unit in smart clothes or artificial skins for robots may require conductive wirings on stretchable materials at very low-cost. In this work, we present an easy method to produce wires using only commercially available materials. A consumer grade inkjet printer was used to print a wire of silver nanoparticles with a sheet resistance below 1 Ω/sq. on a non-pre-strained sheet of elastic silicone. This wire was stretched more than 10,000 times and was still conductive afterwards. The viscoelastic behavior of the substrate results in a temporarily increased resistance that decreases to almost the original value. After over-stretching, the wire is conductive within less than a second. We analyze the swelling of the silicone due to the ink's solvent and the nanoparticle film on top by microscope and SEM images. Finally, a 60 mm long stretchable conductor was integrated onto wearables, and showed that it can bear strains of up to 300% and recover to a conductivity that allows the operation of an assembled LED assembled at only 1.8 V. These self-healing wires can serve as wiring and binary strain or pressure sensors in sportswear, compression underwear, and in robotic applications.

7.
Nanomaterials (Basel) ; 8(10)2018 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-30322201

RESUMEN

In this work, we investigate the thermal and acoustic frequency responses of nanostructured thermoacoustic loudspeakers. An opposite frequency dependence of thermal and acoustic responses was found independently of the device substrate (Kapton and glass) and the nanometric active film (silver nanowires and nm-thick metal films). The experimental results are interpreted with the support of a comprehensive electro-thermo-acoustic model, allowing for the separation of the purely thermal effects from the proper thermoacoustic (TA) transduction. The thermal interactions causing the reported opposite trends are understood, providing useful insights for the further development of the TA loudspeaker technology.

8.
Sci Rep ; 8(1): 14414, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30258083

RESUMEN

We have synthesized a novel three-dimensional metal-organic-framework (MOF) based on the perylene-3,4,9,10-tetracarboxylate linker and potassium as metallic centre. We report the formation of this K-based MOF using conventional routes with water as solvent. This material displays intense green photoluminescence at room temperature, and displays an aggregation dependent quenching. Correlation of the optical properties with the crystalline packing was confirmed by DFT calculations. We also demonstrate its potential to build humidity actuators with a reversible and reproducible response, with a change of 5 orders of magnitudes in its impedance at about 40% relative humidity (RH). This 3D-MOF is based on an interesting perylene derivative octadentate ligand, a moiety with interesting fluorescent properties and known component in organic semiconductors. To the best of our knowledge, this is the first time to build such a printed and flexible actuator towards humidity with a reversible response, enabling precise humidity threshold monitoring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA