Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Chem Rev ; 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36757020

RESUMEN

Electrochemical energy storage systems, specifically lithium and lithium-ion batteries, are ubiquitous in contemporary society with the widespread deployment of portable electronic devices. Emerging storage applications such as integration of renewable energy generation and expanded adoption of electric vehicles present an array of functional demands. Critical to battery function are electron and ion transport as they determine the energy output of the battery under application conditions and what portion of the total energy contained in the battery can be utilized. This review considers electron and ion transport processes for active materials as well as positive and negative composite electrodes. Length and time scales over many orders of magnitude are relevant ranging from atomic arrangements of materials and short times for electron conduction to large format batteries and many years of operation. Characterization over this diversity of scales demands multiple methods to obtain a complete view of the transport processes involved. In addition, we offer a perspective on strategies for enabling rational design of electrodes, the role of continuum modeling, and the fundamental science needed for continued advancement of electrochemical energy storage systems with improved energy density, power, and lifetime.

2.
J Am Chem Soc ; 144(51): 23405-23420, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36513373

RESUMEN

Aqueous Zn/MnO2 batteries (AZMOB) with mildly acidic electrolytes hold promise as potential green grid-level energy storage solutions for clean power generation. Mechanistic understanding is critical to advance capacity retention needed by the application but is complex due to the evolution of the cathode solid phases and the presence of dissolved manganese in the electrolyte due to a dissolution-deposition redox process. This work introduces operando multiphase extended X-ray absorption fine structure (EXAFS) analysis enabling simultaneous characterization of both aqueous and solid phases involved in the Mn redox reactions. The methodology was successfully conducted in multiple electrolytes (ZnSO4, Zn(CF3SO3)2, and Zn(CH3COO)2) revealing similar manganese coordination environments but quantitative differences in distribution of Mnn+ species in the solid and solution phases. Complementary Raman spectroscopy was utilized to identify the less crystalline Mn-containing products formed under charge at the cathodes. This was further augmented by transmission electron microscopy (TEM) to reveal the morphology and surface condition of the deposited solids. The results demonstrate an effective approach for bulk-level characterization of poorly crystalline multiphase solids while simultaneously gaining insight into the dissolved transition-metal species in solution. This work provides demonstration of a useful approach toward gaining insight into complex electrochemical mechanisms where both solid state and dissolved active materials are important contributors to redox activity.

3.
Phys Chem Chem Phys ; 24(19): 11471-11485, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35532142

RESUMEN

Lithium nickel manganese cobalt oxide (NMC) is a commercially successful Li-ion battery cathode due to its high energy density; however, its delivered capacity must be intentionally limited to achieve capacity retention over extended cycling. To design next-generation NMC batteries with longer life and higher capacity the origins of high potential capacity fade must be understood. Operando hard X-ray characterization techniques are critical for this endeavor as they allow the acquisition of information about the evolution of structure, oxidation state, and coordination environment of NMC as the material (de)lithiates in a functional battery. This perspective outlines recent developments in the elucidation of capacity fade mechanisms in NMC through hard X-ray probes, surface sensitive soft X-ray characterization, and isothermal microcalorimetry. A case study on the effect of charging potential on NMC811 over extended cycling is presented to illustrate the benefits of these approaches. The results showed that charging to 4.7 V leads to higher delivered capacity, but much greater fade as compared to charging to 4.3 V. Operando XRD and SEM results indicated that particle fracture from increased structural distortions at >4.3 V was a contributor to capacity fade. Operando hard XAS revealed significant Ni and Co redox during cycling as well as a Jahn-Teller distortion at the discharged state (Ni3+); however, minimal differences were observed between the cells charged to 4.3 and 4.7 V. Additional XAS analyses using soft X-rays revealed significant surface reconstruction after cycling to 4.7 V, revealing another contribution to fade. Operando isothermal microcalorimetry (IMC) indicated that the high voltage charge to 4.7 V resulted in a doubling of the heat dissipation when compared to charging to 4.3 V. A lowered chemical-to-electrical energy conversion efficiency due to thermal energy waste was observed, providing a complementary characterization of electrochemical degradation. The work demonstrates the utility of multi-modal X-ray and microcalorimetric approaches to understand the causes of capacity fade in lithium-ion batteries with Ni-rich NMC.

4.
Inorg Chem ; 60(14): 10398-10414, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34236171

RESUMEN

A series of V-substituted α-MnO2 (KxMn8-yVyO16·nH2O, y = 0, 0.2, 0.34, 0.75) samples were successfully synthesized without crystalline or amorphous impurities, as evidenced by X-ray diffraction (XRD) and Raman spectroscopy. Transmission electron microscopy (TEM) revealed a morphological evolution from nanorods to nanoplatelets as V-substitution increased, while electron-energy loss spectroscopy (EELS) confirmed uniform distribution of vanadium within the materials. Rietveld refinement of synchrotron XRD showed an increase in bond lengths and a larger range of bond angles with increasing V-substitution. X-ray absorption spectroscopy (XAS) of the as-prepared materials revealed the V valence to be >4+ and the Mn valence to decrease with increasing V content. Upon electrochemical lithiation, increasing amounts of V were found to preserve the Mn-Mnedge relationship at higher depths of discharge, indicating enhanced structural stability. Electrochemical testing showed the y = 0.75 V-substituted sample to deliver the highest capacity and capacity retention after 50 cycles. The experimental findings were consistent with the predictions of density functional theory (DFT), where the V centers impart structural stability to the manganese oxide framework upon lithiation. The enhanced electrochemistry of the y = 0.75 V-substituted sample is also attributed to its smaller crystallite size in the form of a nanoplatelet morphology, which promotes facile ion access via reduced Li-ion diffusion path lengths.

5.
Nanotechnology ; 32(37)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34107466

RESUMEN

Zinc ferrite, ZnFe2O4(ZFO), is a promising electrode material for next generation Li-ion batteries because of its high theoretical capacity and low environmental impact. In this report, synthetic control of crystallite size from the nanometer to submicron scale enabled probing of the relationships between ZFO size and electrochemical behavior. A facile two-step coprecipitation and annealing preparation method was used to prepare ZFO with controlled sizes ranging ∼9 to >200 nm. Complementary synchrotron and electron microscopy techniques were used to characterize the series of materials. Increasing the annealing temperature increased crystallinity and decreased microstrain, while local structural ordering was maintained independent of crystallite size. Electrochemical characterization revealed that the smaller sized materials delivered higher capacities during initial lithiation. Larger sized particles exhibited a lack of distinct electrochemical signatures above 1.0 V, suggesting that the longer diffusion length associated with greater crystallite size causes the lithiation process to proceed via non discrete lithium insertion, cation migration, and conversion processes. Notably, larger particles exhibited enhanced electrochemical reversibility over 50 cycles, with capacity retention improving from <20% to >40% at C/2 cycling rate. This intriguing result was probed through x-ray absorption spectroscopy (XAS) and x-ray photoelectron spectroscopy (XPS) measurements of the cycled electrodes. XAS revealed that the larger crystallite size materials do not completely convert to Fe0during the first lithiation and that independent of size, delithiation results in the formation of nanocrystalline FeO and ZnO phases rather than ZnFe2O4. After 20 cycles, the larger crystallites showed reversibility between partially oxidized FeO in the charged state and Fe0in the discharged state, while the smaller crystallite size material was electrochemically inactive as Fe0. XPS analysis revealed more significant solid electrolyte interphase (SEI) formation on the cycled electrodes utilizing ZFO with smaller crystallite size. This finding suggests that excessive SEI buildup on the smaller sized, higher surface area ZFO particles contributes to their reduced electrochemical reversibility relative to the larger crystallite size materials.

6.
Inorg Chem ; 59(6): 3783-3793, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32129071

RESUMEN

A series of tunnel structured V-substituted silver hollandite (Ag1.2VxMn8-xO16, x = 0-1.4) samples is prepared and characterized through a combination of synchrotron X-ray diffraction (XRD), synchrotron X-ray absorption spectroscopy (XAS), laboratory Raman spectroscopy, and electron microscopy measurements. The oxidation states of the individual transition metals are characterized using V and Mn K-edge XAS data indicating the vanadium centers exist as V5+, and the Mn oxidation state decreases with increased V substitution to balance the charge. Scanning transmission electron microscopy of reduced materials shows reduction-displacement of silver metal at high levels of lithiation. In lithium batteries, the V-substituted tunneled manganese oxide materials reveal previously unseen reversible nonaqueous Ag electrochemistry and exhibit up to 2.5× higher Li storage capacity relative to their unsubstituted counterparts. The highest capacity was observed for the Ag1.2(V0.8Mn7.2)O16·0.8H2O material with an intermediate level of V substitution, likely due to a combination of the atomic composition, the morphology of the particle, and the homogeneous distribution of the active material within the electrode structure where factors over multiple length scales contribute to the electrochemistry.

7.
Phys Chem Chem Phys ; 22(45): 26200-26215, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33200756

RESUMEN

Iron based materials hold promise as next generation battery electrode materials for Li ion batteries due to their earth abundance, low cost, and low environmental impact. The iron oxide, magnetite Fe3O4, adopts the spinel (AB2O4) structure. Other 2+ cation transition metal centers can also occupy both tetrahedral and/or octahedral sites in the spinel structure including MgFe2O4, a partially inverse spinel, and ZnFe2O4, a normal spinel. Though structurally similar to Fe3O4 in the pristine state, previous studies suggest significant differences in structural evolution depending on the 2+ cation in the structure. This investigation involves X-ray absorption spectroscopy and X-ray diffraction affirmed by density functional theory (DFT) to elucidate the role of the 2+ cation on the structural evolution and phase transformations during (de)lithiation of the spinel ferrites Fe3O4, MgFe2O4, and ZnFe2O4. The cation in the inverse, normal and partially inverse spinel structures located in the tetrahedral (8a) site migrates to the previously unoccupied octahedral 16c site by 2 electron equivalents of lithiation, resulting in a disordered [A]16c[B2]16dO4 structure. DFT calculations support the experimental results, predicting full displacement of the 8a cation to the 16c site at 2 electron equivalents. Substitution of the 2+ cation results in segregation of oxidized phases in the charged state. This report provides significant structural insight into the (de)lithiation mechanisms for an intriguing class of iron oxide materials.

8.
Phys Chem Chem Phys ; 19(21): 14160-14169, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28530304

RESUMEN

Li1+nV3O8 (n = 0-0.2) has been extensively investigated as a cathode material for Li ion batteries because of its superior electrochemical properties including high specific energy and good rate capability. In this paper, a synchrotron based energy dispersive X-ray diffraction (EDXRD) technique was employed to profile the phase transitions and the spatial phase distribution of a Li1.1V3O8 electrode during electrochemical (de)lithiation in situ and operando. As annealing temperature during the preparation of the Li1.1V3O8 material has a strong influence on the morphology and crystallinity, and consequently influences the electrochemical outcomes of the material, Li1.1V3O8 materials prepared at two different temperatures, 500 and 300 °C (LVO500 and LVO300), were employed in this study. The EDXRD spectra of LVO500 and LVO300 cells pre-discharged at C/18, C/40 and C/150 were recorded in situ, and phase localization and relative intensity of the peaks were compared. For cells discharged at the C/18 rate, although α and ß phases were distributed uniformly within the LVO500 electrode, they were localized on two sides of the LVO300 electrode. Discharging rates of C/40 and C/150 led to homogeneous ß phase formation in both LVO500 and LVO300 electrodes. Furthermore, the phase distribution as a function of position and (de)lithiation extent was mapped operando as the LVO500 cell was (de)lithiated. The operando data indicate that (1) the lithiation reaction initiated from the side of the electrode facing the Li anode and proceeded towards the side facing the steel can, (2) during discharge the phase transformation from a Li-poor to a Li-rich α phase and the formation of a ß phase can proceed simultaneously in the electrode after the first formation of a ß phase, and (3) the structural evolution occurring during charging is not the reverse of that during discharge and takes place homogenously throughout the electrode.

9.
Phys Chem Chem Phys ; 19(33): 22329-22343, 2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-28805218

RESUMEN

The structure of pristine AgFeO2 and phase makeup of Ag0.2FeO1.6 (a one-pot composite comprised of nanocrystalline stoichiometric AgFeO2 and amorphous γ-Fe2O3 phases) was investigated using synchrotron X-ray diffraction. A new stacking-fault model was proposed for AgFeO2 powder synthesized using the co-precipitation method. The lithiation/de-lithiation mechanisms of silver ferrite, AgFeO2 and Ag0.2FeO1.6 were investigated using ex situ, in situ, and operando characterization techniques. An amorphous γ-Fe2O3 component in the Ag0.2FeO1.6 sample is quantified. Operando XRD of electrochemically reduced AgFeO2 and Ag0.2FeO1.6 composites demonstrated differences in the structural evolution of the nanocrystalline AgFeO2 component. As complimentary techniques to XRD, ex situ X-ray Absorption Spectroscopy (XAS) provided insight into the short-range structure of the (de)lithiated nanocrystalline electrodes, and a novel in situ high energy X-ray fluorescence nanoprobe (HXN) mapping measurement was applied to spatially resolve the progression of discharge. Based on the results, a redox mechanism is proposed where the full reduction of Ag+ to Ag0 and partial reduction of Fe3+ to Fe2+ occur on reduction to 1.0 V, resulting in a Li1+yFeIIIFeIIyO2 phase. The Li1+yFeIIIFeIIyO2 phase can then reversibly cycle between Fe3+ and Fe2+ oxidation states, permitting good capacity retention over 50 cycles. In the Ag0.2FeO1.6 composite, a substantial amorphous γ-Fe2O3 component is observed which discharges to rock salt LiFe2O3 and Fe0 metal phase in the 3.5-1.0 V voltage range (in parallel with the AgFeO2 mechanism), and reversibly reoxidizes to a nanocrystalline iron oxide phase.

10.
Phys Chem Chem Phys ; 19(31): 20867-20880, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28745341

RESUMEN

The iron oxide magnetite, Fe3O4, is a promising conversion type lithium ion battery anode material due to its high natural abundance, low cost and high theoretical capacity. While the close packing of ions in the inverse spinel structure of Fe3O4 enables high energy density, it also limits the kinetics of lithium ion diffusion in the material. Nanosizing of Fe3O4 to reduce the diffusion path length is an effective strategy for overcoming this issue and results in improved rate capability. However, the impact of nanosizing on the multiple structural transformations that occur during the electrochemical (de)lithiation reaction in Fe3O4 is poorly understood. In this study, the influence of crystallite size on the lithiation-conversion mechanisms in Fe3O4 is investigated using complementary X-ray techniques along with transmission electron microscopy (TEM) and continuum level simulations on electrodes of two different Fe3O4 crystallite sizes. In situ X-ray diffraction (XRD) measurements were utilized to track the changes to the crystalline phases during (de)lithiation. X-ray absorption spectroscopy (XAS) measurements at multiple points during the (de)lithiation processes provided local electronic and atomic structural information. Tracking the crystalline and nanocrystalline phases during the first (de)lithiation provides experimental evidence that (1) the lithiation mechanism is non-uniform and dependent on crystallite size, where increased Li+ diffusion length in larger crystals results in conversion to Fe0 metal while insertion of Li+ into spinel-Fe3O4 is still occurring, and (2) the disorder and size of the Fe metal domains formed when either material is fully lithiated impacts the homogeneity of the FeO phase formed during the subsequent delithiation.

11.
Phys Chem Chem Phys ; 17(3): 2034-42, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25478865

RESUMEN

The detailed understanding of non-faradaic parasitic reactions which diminish battery calendar life is essential to the development of effective batteries for use in long life applications. The dissolution of cathode materials including manganese, cobalt and vanadium oxides in battery systems has been identified as a battery failure mechanism, yet detailed dissolution studies including kinetic analysis are absent from the literature. The results presented here provide a framework for the quantitative and kinetic analyses of the dissolution of cathode materials which will aid the broader community in more fully understanding this battery failure mechanism. In this study, the dissolution of silver vanadium oxide, representing the primary battery powering implantable cardioverter defibrillators (ICD), is compared with the dissolution of silver vanadium phosphorous oxide (Ag(w)VxPyOz) materials which were targeted as alternatives to minimize solubility. This study contains the first kinetic analyses of silver and vanadium solution formation from Ag0.48VOPO4·1.9H2O and Ag2VP2O8, in a non-aqueous battery electrolyte. The kinetic results are compared with those of Ag2VO2PO4 and Ag2V4O11 to probe the relationships among crystal structure, stoichiometry, and solubility. For vanadium, significant dissolution was observed for Ag2V4O11 as well as for the phosphate oxide Ag0.49VOPO4·1.9H2O, which may involve structural water or the existence of multiple vanadium oxidation states. Notably, the materials from the SVPO family with the lowest vanadium solubility are Ag2VO2PO4 and Ag2VP2O8. The low concentrations and solution rates coupled with their electrochemical performance make these materials interesting alternatives to Ag2V4O11 for the ICD application.


Asunto(s)
Suministros de Energía Eléctrica , Electroquímica , Fósforo/química , Plata/química , Vanadio/química , Cristalografía por Rayos X , Cinética , Soluciones
12.
Phys Chem Chem Phys ; 17(17): 11204-10, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25827353

RESUMEN

Previously, we reported that electrodes containing silver vanadium phosphate (Ag2VO2PO4) powder exhibit a 15,000 fold increase in conductivity after discharge, concurrent with the formation of silver metal. In this study, in order to disentangle the complex nature of electrodes composed of electroactive powders, an electrochemical reduction of individual particles of Ag2VO2PO4 was conducted, to more directly probe the intrinsic materials properties of Ag2VO2PO4. Specifically, individual particle conductivity data from a nanoprobe system combined with SEM and optical imaging results revealed that the depth of discharge within an Ag2VO2PO4 particle is closely linked to the conductivity increase. Notably, the formation of silver metal may affect both inter- and intraparticle conductivity of the Ag2VO2PO4 material.

13.
Phys Chem Chem Phys ; 16(19): 9138-47, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24705594

RESUMEN

In situ, in operando characterization of electrochemical cells can provide insight into the complex discharge chemistries of batteries which may not be available with destructive methods. In this study, in situ energy-dispersive X-ray spectroscopy (EDXRD) measurements are conducted for the first time on active lithium/silver vanadium diphosphate, Li/Ag2VP2O8, electrochemical cells at several depths of discharge allowing depth profiling analysis of the reduction process. This technique enables non-destructive, in operando imaging of the reduction process within a battery electrode over a millimeter scale interrogation area with micron scale resolution. The discharge of Ag2VP2O8 progresses via a reduction displacement reaction forming conductive silver metal as a discharge product, a high Z material which can be readily detected by diffraction-based methods. The high energy X-ray capabilities of NSLS beamline X17B1 allowed spatially resolved detection of the reduction products forming conductive pathways providing insight into the discharge mechanism of Ag2VP2O8.

14.
J Power Sources ; 231: 219-225, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25866437

RESUMEN

Silver vanadium oxide (Ag2V4O11, SVO) has enjoyed widespread commercial success over the past 30 years as a cathode material for implantable cardiac defibrillator (ICD) batteries. Recently, silver vanadium phosphorous oxide (Ag2VO2PO4, SVPO) has been studied as possibly combining the desirable thermal stability aspects of LiFePO4 with the electrical conductivity of SVO. Further, due to the noted insoluble nature of most phosphate salts, a lower material solubility of SVPO relative to SVO is anticipated. Thus, the first vanadium dissolution studies of SVPO in battery electrolyte solutions are described herein. The equilibrium solubility of SVPO was ~5 times less than SVO, with a rate constant of dissolution ~3.5 times less than that of SVO. The vanadium dissolution in SVO and SVPO can be adequately described with a diffusion layer model, as supported by the Noyes-Whitney equation. Cells prepared with vanadium-treated anodes displayed higher AC impedance and DC resistance relative to control anodes. These data support the premise that SVPO cells are likely to exhibit reduced cathode solubility and thus less affected by increased cell resistance due to cathode solubility compared to SVO based cells.

15.
J Phys Chem Lett ; 14(34): 7718-7731, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37606601

RESUMEN

Localized high-concentration electrolytes (LHCEs) combine a diluent with a high-concentration electrolyte, offering promising properties. The ions, solvent, and diluent interact to form complex heterogeneous liquid structures, where high salt concentration clusters are embedded in the diluent. Optimizing LHCEs for desired electrolyte properties like high ionic conductivity, low viscosity, and effective solid electrolyte interphase (SEI) formation ability within the vast chemical and compositional design space requires deeper understanding and theoretical guidance. We investigated the structures and conductivities of LHCEs based on a fluorinated solvent with two different diluents at varying concentrations. 2,2,3,3-Tetrafluoropropyl trifluoroacetate (TFPTFA) enters the solvation cluster due to its stronger Li-ion interactions, whereas 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether (TFETFE) enters only at extremely high diluent concentrations. The ionic conductivity increases with decreasing diluent concentrations, with a slope change during cluster percolation. Overall, TFETFE demonstrates higher effectiveness than TFPTFA, forming higher local salt concentration clusters and resulting in higher ionic conductivity.

16.
ACS Appl Mater Interfaces ; 15(20): 24306-24318, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37163664

RESUMEN

Two-dimensional (2D) siloxene (Si6O3H6) has shown promise as a negative electrode material for Li-ion batteries due to its high gravimetric capacity and superior mechanical properties under (de)lithiation compared to bulk Si. In this work, we prepare purified siloxene nanosheets through the removal of bulk Si contaminants, use ultrasonication to control the lateral size and thickness of the nanosheets, and probe the effects of the resulting morphology and purity on the electrochemistry. The thin siloxene nanosheets formed after 4 h of ultrasonication deliver an average capacity of 810 mA h/g under a 1000 mA/g rate over 200 cycles with a capacity retention of 76%. Interestingly, the purified siloxene shows lower initial capacity but superior capacity retention over extended cycling. The 2D morphology benefit is illustrated where the parent siloxene nanosheet morphology and structure were largely maintained based on operando optoelectrochemistry, in situ Raman, ex situ scanning electron microscopy, and ex situ transmission electron microscopy. Furthermore, the purified siloxene-based electrode free from crystalline Si impurity experiences the least expansion upon (de)lithiation as visualized by cross-section electron microscopy of samples recovered post-cycling.

17.
Electrochim Acta ; 842012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24179249

RESUMEN

Battery systems have been developed that provide years of service for implantable medical devices. The primary systems utilize lithium metal anodes with cathode systems including iodine, manganese oxide, carbon monofluoride, silver vanadium oxide and hybrid cathodes. Secondary lithium ion batteries have also been developed for medical applications where the batteries are charged while remaining implanted. While the specific performance requirements of the devices vary, some general requirements are common. These include high safety, reliability and volumetric energy density, long service life, and state of discharge indication. Successful development and implementation of these battery types has helped enable implanted biomedical devices and their treatment of human disease.

18.
Front Chem ; 10: 873462, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35518718

RESUMEN

A capacitance increase phenomenon is observed for MoO3 electrodes synthesized via a sol-gel process in the presence of dopamine hydrochloride (Dopa HCl) as compared to α-MoO3 electrodes in 5M ZnCl2 aqueous electrolyte. The synthesis approach is based on a hydrogen peroxide-initiated sol-gel reaction to which the Dopa HCl is added. The powder precursor (Dopa)xMoOy, is isolated from the metastable gel using freeze-drying. Hydrothermal treatment (HT) of the precursor results in the formation of MoO3 accompanied by carbonization of the organic molecules; designated as HT-MoO3/C. HT of the precipitate formed in the absence of dopamine in the reaction produced α-MoO3, which was used as a reference material in this study (α-MoO3-ref). Scanning electron microscopy (SEM) images show a nanobelt morphology for both HT-MoO3/C and α-MoO3-ref powders, but with distinct differences in the shape of the nanobelts. The presence of carbonaceous content in the structure of HT-MoO3/C is confirmed by FTIR and Raman spectroscopy measurements. X-ray diffraction (XRD) and Rietveld refinement analysis demonstrate the presence of α-MoO3 and h-MoO3 phases in the structure of HT-MoO3/C. The increased specific capacitance delivered by the HT-MoO3/C electrode as compared to the α-MoO3-ref electrode in 5M ZnCl2 electrolyte in a -0.25-0.70 V vs. Ag/AgCl potential window triggered a more detailed study in an expanded potential window. In the 5M ZnCl2 electrolyte at a scan rate of 2 mV s-1, the HT-MoO3/C electrode shows a second cycle capacitance of 347.6 F g-1. The higher electrochemical performance of the HT-MoO3/C electrode can be attributed to the presence of carbon in its structure, which can facilitate electron transport. Our study provides a new route for further development of metal oxides for energy storage applications.

19.
ACS Appl Mater Interfaces ; 14(18): 20404-20417, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35358380

RESUMEN

Silicon (Si) is a promising high-capacity material for lithium-ion batteries; however, its limited reversibility hinders commercial adoption. Approaches such as particle and crystallite size reduction, introduction of conductive carbon, and use of different electrolyte solvents have been explored to overcome these electrochemical limitations. Herein, operando isothermal microcalorimetry (IMC) is used to probe the influence of silicon particle size, electrode composition, and electrolyte additives fluoroethylene carbonate and vinylene carbonate on the heat flow during silicon lithiation. The IMC data are complemented by X-ray photoelectron and Raman spectroscopies to elucidate differences in solid electrolyte interphase (SEI) composition. Nanosized (∼50 nm, n-Si) and micrometer-sized (∼4 µm, µ-Si) silicon electrodes are formulated with and without amorphous carbon and electrochemically lithiated in ethylene carbonate (EC), fluoroethylene carbonate (FEC), or vinylene carbonate (VC) based electrolytes. Notably, n-Si electrodes generate 53-61% more normalized heat relative to their µ-Si counterparts, consistent with increased surface area and electrode/electrolyte reactivity. Introduction of amorphous carbon significantly alters the heat flow profile where multiple exothermic peaks and increased normalized heat dissipation are observed for all electrolyte types. Notably, the VC-containing electrolyte demonstrates the greatest normalized heat dissipation of the electrode compositions tested showing as much as a 50% increase compared to the EC or FEC counterparts. The results are relevant to the understanding of silicon negative electrode function in the presence of electrolyte additives and provide insight relative to silicon containing cell reactivity and safety.

20.
PLoS One ; 17(1): e0257963, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34986162

RESUMEN

In times of crisis, including the current COVID-19 pandemic, the supply chain of filtering facepiece respirators, such as N95 respirators, are disrupted. To combat shortages of N95 respirators, many institutions were forced to decontaminate and reuse respirators. While several reports have evaluated the impact on filtration as a measurement of preservation of respirator function after decontamination, the equally important fact of maintaining proper fit to the users' face has been understudied. In the current study, we demonstrate the complete inactivation of SARS-CoV-2 and preservation of fit test performance of N95 respirators following treatment with dry heat. We apply scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS), X-ray diffraction (XRD) measurements, Raman spectroscopy, and contact angle measurements to analyze filter material changes as a consequence of different decontamination treatments. We further compared the integrity of the respirator after autoclaving versus dry heat treatment via quantitative fit testing and found that autoclaving, but not dry heat, causes the fit of the respirator onto the users face to fail, thereby rendering the decontaminated respirator unusable. Our findings highlight the importance to account for both efficacy of disinfection and mask fit when reprocessing respirators to for clinical redeployment.


Asunto(s)
COVID-19/prevención & control , Descontaminación/métodos , Equipo Reutilizado , Respiradores N95/virología , SARS-CoV-2/fisiología , COVID-19/transmisión , Equipos y Suministros , Personal de Salud , Calor , Humanos , Pandemias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA