Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neuroimage ; 251: 119022, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35192943

RESUMEN

The noradrenergic locus coeruleus (LC) is a small brainstem nucleus that promotes arousal and attention. Recent studies have examined the microstructural properties of the LC using diffusion-weighted magnetic resonance imaging and found unexpected age-related differences in fractional anisotropy - a measure of white matter integrity. Here, we used two datasets (Berlin Aging Study-II, N = 301, the Leipzig Study for Mind-Body-Emotion Interactions, N = 220), to replicate published findings and expand them by investigating diffusivity in the LC's ascending noradrenergic bundle. In younger adults, LC fractional anisotropy was significantly lower, compared to older adults. However, in the LC's ascending noradrenergic bundle, we observed significantly higher fractional anisotropy in younger adults, relative to older adults. These findings indicate that diffusivity in the LC versus the ascending noradrenergic bundle are both susceptible to structural changes in aging that have opposing effects on fractional anisotropy.


Asunto(s)
Locus Coeruleus , Sustancia Blanca , Anciano , Envejecimiento , Anisotropía , Imagen de Difusión por Resonancia Magnética , Humanos , Locus Coeruleus/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
2.
Hum Brain Mapp ; 43(11): 3585-3603, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35397153

RESUMEN

We investigate the reliability of individual differences of four quantities measured by magnetic resonance imaging-based multiparameter mapping (MPM): magnetization transfer saturation (MT), proton density (PD), longitudinal relaxation rate (R1 ), and effective transverse relaxation rate (R2 *). Four MPM datasets, two on each of two consecutive days, were acquired in healthy young adults. On Day 1, no repositioning occurred and on Day 2, participants were repositioned between MPM datasets. Using intraclass correlation effect decomposition (ICED), we assessed the contributions of session-specific, day-specific, and residual sources of measurement error. For whole-brain gray and white matter, all four MPM parameters showed high reproducibility and high reliability, as indexed by the coefficient of variation (CoV) and the intraclass correlation (ICC). However, MT, PD, R1 , and R2 * differed markedly in the extent to which reliability varied across brain regions. MT and PD showed high reliability in almost all regions. In contrast, R1 and R2 * showed low reliability in some regions outside the basal ganglia, such that the sum of the measurement error estimates in our structural equation model was higher than estimates of between-person differences. In addition, in this sample of healthy young adults, the four MPM parameters showed very little variability over four measurements but differed in how well they could assess between-person differences. We conclude that R1 and R2 * might carry only limited person-specific information in some regions of the brain in healthy young adults, and, by implication, might be of restricted utility for studying associations to between-person differences in behavior in those regions.


Asunto(s)
Imagen por Resonancia Magnética , Protones , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Mapeo Encefálico , Humanos , Reproducibilidad de los Resultados , Adulto Joven
3.
Proc Natl Acad Sci U S A ; 114(34): 9212-9217, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28784801

RESUMEN

Adaptive learning systems need to meet two complementary and partially conflicting goals: detecting regularities in the world versus remembering specific events. The hippocampus (HC) keeps a fine balance between computations that extract commonalities of incoming information (i.e., pattern completion) and computations that enable encoding of highly similar events into unique representations (i.e., pattern separation). Histological evidence from young rhesus monkeys suggests that HC development is characterized by the differential development of intrahippocampal subfields and associated networks. However, due to challenges in the in vivo investigation of such developmental organization, the ontogenetic timing of HC subfield maturation remains controversial. Delineating its course is important, as it directly influences the fine balance between pattern separation and pattern completion operations and, thus, developmental changes in learning and memory. Here, we relate in vivo, high-resolution structural magnetic resonance imaging data of HC subfields to behavioral memory performance in children aged 6-14 y and in young adults. We identify a multivariate profile of age-related differences in intrahippocampal structures and show that HC maturity as captured by this pattern is associated with age differences in the differential encoding of unique memory representations.


Asunto(s)
Hipocampo/crecimiento & desarrollo , Hipocampo/fisiología , Memoria , Adolescente , Adulto , Factores de Edad , Niño , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Aprendizaje , Imagen por Resonancia Magnética , Masculino , Adulto Joven
4.
Hum Brain Mapp ; 39(2): 916-931, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29171108

RESUMEN

Automated segmentation of hippocampal (HC) subfields from magnetic resonance imaging (MRI) is gaining popularity, but automated procedures that afford high speed and reproducibility have yet to be extensively validated against the standard, manual morphometry. We evaluated the concurrent validity of an automated method for hippocampal subfields segmentation (automated segmentation of hippocampal subfields, ASHS; Yushkevich et al., ) using a customized atlas of the HC body, with manual morphometry as a standard. We built a series of customized atlases comprising the entorhinal cortex (ERC) and subfields of the HC body from manually segmented images, and evaluated the correspondence of automated segmentations with manual morphometry. In samples with age ranges of 6-24 and 62-79 years, 20 participants each, we obtained validity coefficients (intraclass correlations, ICC) and spatial overlap measures (dice similarity coefficient) that varied substantially across subfields. Anterior and posterior HC body evidenced the greatest discrepancies between automated and manual segmentations. Adding anterior and posterior slices for atlas creation and truncating automated output to the ranges manually defined by multiple neuroanatomical landmarks substantially improved the validity of automated segmentation, yielding ICC above 0.90 for all subfields and alleviating systematic bias. We cross-validated the developed atlas on an independent sample of 30 healthy adults (age 31-84) and obtained good to excellent agreement: ICC (2) = 0.70-0.92. Thus, with described customization steps implemented by experts trained in MRI neuroanatomy, ASHS shows excellent concurrent validity, and can become a promising method for studying age-related changes in HC subfield volumes.


Asunto(s)
Hipocampo/diagnóstico por imagen , Hipocampo/crecimiento & desarrollo , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Reconocimiento de Normas Patrones Automatizadas/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Atlas como Asunto , Niño , Femenino , Hipocampo/anatomía & histología , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Adulto Joven
5.
Cereb Cortex ; 27(5): 2911-2925, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27226440

RESUMEN

Evidence for experience-dependent structural brain change in adult humans is accumulating. However, its time course is not well understood, as intervention studies typically consist of only 2 imaging sessions (before vs. after training). We acquired up to 18 structural magnetic resonance images over a 7-week period while 15 right-handed participants practiced left-hand writing and drawing. After 4 weeks, we observed increases in gray matter of both left and right primary motor cortices relative to a control group; 3 weeks later, these differences were no longer reliable. Time-series analyses revealed that gray matter in the primary motor cortices expanded during the first 4 weeks and then partially renormalized, in particular in the right hemisphere, despite continued practice and increasing task proficiency. Similar patterns of expansion followed by partial renormalization are also found in synaptogenesis, cortical map plasticity, and maturation, and may qualify as a general principle of structural plasticity. Research on human brain plasticity needs to encompass more than 2 measurement occasions to capture expansion and potential renormalization processes over time.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Corteza Motora/diagnóstico por imagen , Dinámicas no Lineales , Desempeño Psicomotor/fisiología , Escritura , Adulto , Análisis de Varianza , Lateralidad Funcional/fisiología , Sustancia Gris/diagnóstico por imagen , Mano/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Cinética , Masculino , Corteza Motora/fisiología , Análisis de Regresión , Factores de Tiempo
6.
Neuroimage ; 131: 155-61, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26584869

RESUMEN

This study investigates the effects of fitness changes on hippocampal microstructure and hippocampal volume. Fifty-two healthy participants aged 59-74years with a sedentary lifestyle were randomly assigned to either of two levels of exercise intensity. Training lasted for six months. Physical fitness, hippocampal volumes, and hippocampal microstructure were measured before and after training. Hippocampal microstructure was assessed by mean diffusivity, which inversely reflects tissue density; hence, mean diffusivity is lower for more densely packed tissue. Mean changes in fitness did not differ reliably across intensity levels of training, so data were collapsed across groups. Multivariate modeling of pretest-posttest differences using structural equation modeling (SEM) revealed that individual differences in latent change were reliable for all three constructs. More positive changes in fitness were associated with more positive changes in tissue density (i.e., more negative changes in mean diffusivity), and more positive changes in tissue density were associated with more positive changes in volume. We conclude that fitness-related changes in hippocampal volume may be brought about by changes in tissue density. The relative contributions of angiogenesis, gliogenesis, and/or neurogenesis to changes in tissue density remain to be identified.


Asunto(s)
Envejecimiento/patología , Envejecimiento/fisiología , Hipocampo/citología , Hipocampo/fisiología , Acondicionamiento Físico Humano/métodos , Aptitud Física/fisiología , Anciano , Mapeo Encefálico/métodos , Ejercicio Físico/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Plasticidad Neuronal/fisiología , Tamaño de los Órganos/fisiología , Conducta Sedentaria
7.
Neuroimage ; 131: 205-13, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26477659

RESUMEN

Experience can affect human gray matter volume. The behavioral correlates of individual differences in such brain changes are not well understood. In a group of Swedish individuals studying Italian as a foreign language, we investigated associations among time spent studying, acquired vocabulary, baseline performance on memory tasks, and gray matter changes. As a way of studying episodic memory training, the language learning focused on acquiring foreign vocabulary and lasted for 10weeks. T1-weighted structural magnetic resonance imaging and cognitive testing were performed before and after the studies. Learning behavior was monitored via participants' use of a smartphone application dedicated to the study of vocabulary. A whole-brain analysis showed larger changes in gray matter structure of the right hippocampus in the experimental group (N=33) compared to an active control group (N=23). A first path analyses revealed that time spent studying rather than acquired knowledge significantly predicted change in gray matter structure. However, this association was not significant when adding performance on baseline memory measures into the model, instead only the participants' performance on a short-term memory task with highly similar distractors predicted the change. This measure may tap similar individual difference factors as those involved in gray matter plasticity of the hippocampus.


Asunto(s)
Sustancia Gris/anatomía & histología , Sustancia Gris/fisiología , Hipocampo/anatomía & histología , Hipocampo/fisiología , Lenguaje , Traducción , Aprendizaje Verbal/fisiología , Adolescente , Adulto , Mapeo Encefálico , Femenino , Humanos , Masculino , Plasticidad Neuronal/fisiología , Tamaño de los Órganos/fisiología , Estadística como Asunto , Adulto Joven
8.
Hum Brain Mapp ; 35(8): 4236-48, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24532539

RESUMEN

We compared hippocampal volume measures obtained by manual tracing to automatic segmentation with FreeSurfer in 44 younger (20-30 years) and 47 older (60-70 years) adults, each measured with magnetic resonance imaging (MRI) over three successive time points, separated by four months. Retest correlations over time were very high for both manual and FreeSurfer segmentations. With FreeSurfer, correlations over time were significantly lower in the older than in the younger age group, which was not the case with manual segmentation. Pearson correlations between manual and FreeSurfer estimates were sufficiently high, numerically even higher in the younger group, whereas intra-class correlation coefficient (ICC) estimates were lower in the younger than in the older group. FreeSurfer yielded higher volume estimates than manual segmentation, particularly in the younger age group. Importantly, FreeSurfer consistently overestimated hippocampal volumes independently of manually assessed volume in the younger age group, but overestimated larger volumes in the older age group to a less extent, introducing a systematic age bias in the data. Age differences in hippocampal volumes were significant with FreeSurfer, but not with manual tracing. Manual tracing resulted in a significant difference between left and right hippocampus (right > left), whereas this asymmetry effect was considerably smaller with FreeSurfer estimates. We conclude that FreeSurfer constitutes a feasible method to assess differences in hippocampal volume in young adults. FreeSurfer estimates in older age groups should, however, be interpreted with care until the automatic segmentation pipeline has been further optimized to increase validity and reliability in this age group.


Asunto(s)
Hipocampo/anatomía & histología , Imagen por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Programas Informáticos , Adulto , Anciano , Estudios de Factibilidad , Lateralidad Funcional , Humanos , Estudios Longitudinales , Persona de Mediana Edad , Tamaño de los Órganos , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador , Adulto Joven
9.
BMC Neurosci ; 15: 6, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24397347

RESUMEN

BACKGROUND: Despite strong evidence that the pathophysiology of Tourette syndrome (TS) involves structural and functional disturbances of the basal ganglia and cortical frontal areas, findings from in vivo imaging studies have provided conflicting results. In this study we used whole brain diffusion tensor imaging (DTI) to investigate the microstructural integrity of white matter pathways and brain tissue in 19 unmedicated, adult, male patients with TS "only" (without comorbid psychiatric disorders) and 20 age- and sex-matched control subjects. RESULTS: Compared to normal controls, TS patients showed a decrease in the fractional anisotropy index (FA) bilaterally in the medial frontal gyrus, the pars opercularis of the left inferior frontal gyrus, the middle occipital gyrus, the right cingulate gyrus, and the medial premotor cortex. Increased apparent diffusion coefficient (ADC) maps were detected in the left cingulate gyrus, prefrontal areas, left precentral gyrus, and left putamen. There was a negative correlation between tic severity and FA values in the left superior frontal gyrus, medial frontal gyrus bilaterally, cingulate gyrus bilaterally, and ventral posterior lateral nucleus of the right thalamus, and a positive correlation in the body of the corpus callosum, left thalamus, right superior temporal gyrus, and left parahippocampal gyrus. There was also a positive correlation between regional ADC values and tic severity in the left cingulate gyrus, putamen bilaterally, medial frontal gyrus bilaterally, left precentral gyrus, and ventral anterior nucleus of the left thalamus. CONCLUSIONS: Our results confirm prior studies suggesting that tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus seem to reflect secondary compensatory mechanisms. Due to the study design, influences from comorbidities, gender, medication and age can be excluded.


Asunto(s)
Giro del Cíngulo/patología , Corteza Prefrontal/patología , Putamen/patología , Tálamo/patología , Tics/patología , Síndrome de Tourette/patología , Adaptación Fisiológica , Adolescente , Imagen de Difusión Tensora , Femenino , Giro del Cíngulo/fisiopatología , Humanos , Masculino , Corteza Prefrontal/fisiopatología , Putamen/fisiopatología , Tálamo/fisiopatología , Tics/fisiopatología , Síndrome de Tourette/fisiopatología , Adulto Joven
10.
Proc Natl Acad Sci U S A ; 108(13): 5408-13, 2011 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-21402920

RESUMEN

The prefrontal cortex (PFC) is assumed to contribute to goal-directed episodic encoding by exerting cognitive control on medial temporal lobe (MTL) memory processes. However, it is thus far unclear to what extent the contribution of PFC-MTL interactions to memory manifests at a structural anatomical level. We combined functional magnetic resonance imaging and fiber tracking based on diffusion tensor imaging in 28 young, healthy adults to quantify the density of white matter tracts between PFC regions that were activated during the encoding period of a verbal free-recall task and MTL subregions. Across the cohort, the strength of fiber bundles linking activated ventrolateral PFC regions and the rhinal cortex (comprising the peri- and entorhinal cortices) of the MTL correlated positively with free-recall performance. These direct white matter connections provide a basis through which activated regions in the PFC can interact with the MTL and contribute to interindividual differences in human episodic memory.


Asunto(s)
Recuerdo Mental/fisiología , Vías Nerviosas/anatomía & histología , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Lóbulo Temporal/citología , Lóbulo Temporal/fisiología , Adulto , Conducta/fisiología , Mapeo Encefálico/métodos , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Adulto Joven
11.
Hum Brain Mapp ; 34(7): 1530-41, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22331673

RESUMEN

Increases in striatal activity have been suggested to mediate training-related improvements in working-memory ability. We investigated the temporal dynamics of changes in task-related brain activity following training of working memory. Participants in an experimental group and an active control group, trained on easier tasks of a constant difficulty in shorter sessions than the experimental group, were measured before, after about 1 week, and after more than 50 days of training. In the experimental group an initial increase of working-memory related activity in the functionally defined right striatum and anatomically defined right and left putamen was followed by decreases, resulting in an inverted u-shape function that relates activity to training over time. Activity increases in the striatum developed slower in the active control group, observed at the second posttest after more than 50 days of training. In the functionally defined left striatum, initial activity increases were maintained after more extensive training and the pattern was similar for the two groups. These results shed new light on the relation between activity in the striatum (especially the putamen) and the effects of working memory training, and illustrate the importance of multiple measurements for interpreting effects of training on regional brain activity.


Asunto(s)
Mapeo Encefálico , Cuerpo Estriado/fisiología , Aprendizaje/fisiología , Dinámicas no Lineales , Adulto , Análisis de Varianza , Cognición/fisiología , Cuerpo Estriado/irrigación sanguínea , Femenino , Lateralidad Funcional , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Memoria a Corto Plazo/fisiología , Pruebas Neuropsicológicas , Oxígeno , Factores de Tiempo , Transferencia de Experiencia en Psicología , Adulto Joven
12.
Nat Aging ; 3(9): 1128-1143, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653256

RESUMEN

Changes in dopaminergic neuromodulation play a key role in adult memory decline. Recent research has also implicated noradrenaline in shaping late-life memory. However, it is unclear whether these two neuromodulators have distinct roles in age-related cognitive changes. Here, combining longitudinal MRI of the dopaminergic substantia nigra-ventral tegmental area (SN-VTA) and noradrenergic locus coeruleus (LC) in younger (n = 69) and older (n = 251) adults, we found that dopaminergic and noradrenergic integrity are differentially associated with memory performance. While LC integrity was related to better episodic memory across several tasks, SN-VTA integrity was linked to working memory. Longitudinally, we found that older age was associated with more negative change in SN-VTA and LC integrity. Notably, changes in LC integrity reliably predicted future episodic memory. These differential associations of dopaminergic and noradrenergic nuclei with late-life cognitive decline have potential clinical utility, given their degeneration in several age-associated diseases.


Asunto(s)
Cognición , Disfunción Cognitiva , Adulto , Humanos , Locus Coeruleus/diagnóstico por imagen , Sustancia Negra , Dopamina , Norepinefrina
13.
Neuroimage ; 63(1): 240-4, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22750568

RESUMEN

The influence of adult foreign-language acquisition on human brain organization is poorly understood. We studied cortical thickness and hippocampal volumes of conscript interpreters before and after three months of intense language studies. Results revealed increases in hippocampus volume and in cortical thickness of the left middle frontal gyrus, inferior frontal gyrus, and superior temporal gyrus for interpreters relative to controls. The right hippocampus and the left superior temporal gyrus were structurally more malleable in interpreters acquiring higher proficiency in the foreign language. Interpreters struggling relatively more to master the language displayed larger gray matter increases in the middle frontal gyrus. These findings confirm structural changes in brain regions known to serve language functions during foreign-language acquisition.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Lenguaje , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Traducción , Adolescente , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tamaño de los Órganos/fisiología , Suecia , Adulto Joven
14.
BMC Neurol ; 12: 35, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22682434

RESUMEN

BACKGROUND: We report the case of a chronic stroke patient (62 months after injury) showing total absence of motor activity evoked by transcranial magnetic stimulation (TMS) of spared regions of the left motor cortex, but near-to-complete recovery of motor abilities in the affected hand. CASE PRESENTATION: Multimodal investigations included detailed TMS based motor mapping, motor evoked potentials (MEP), and Cortical Silent period (CSP) as well as functional magnetic resonance imaging (fMRI) of motor activity, MRI based lesion analysis and Diffusion Tensor Imaging (DTI) Tractography of corticospinal tract (CST). Anatomical analysis revealed a left hemisphere subinsular lesion interrupting the descending left CST at the level of the internal capsule. The absence of MEPs after intense TMS pulses to the ipsilesional M1, and the reversible suppression of ongoing electromyographic (EMG) activity (indexed by CSP) demonstrate a weak modulation of subcortical systems by the ipsilesional left frontal cortex, but an inability to induce efficient descending volleys from those cortical locations to right hand and forearm muscles. Functional MRI recordings under grasping and finger tapping patterns involving the affected hand showed slight signs of subcortical recruitment, as compared to the unaffected hand and hemisphere, as well as the expected cortical activations. CONCLUSIONS: The potential sources of motor voluntary activity for the affected hand in absence of MEPs are discussed. We conclude that multimodal analysis may contribute to a more accurate prognosis of stroke patients.


Asunto(s)
Potenciales Evocados Motores , Trastornos del Movimiento/complicaciones , Trastornos del Movimiento/diagnóstico , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico , Estimulación Magnética Transcraneal/métodos , Enfermedad Crónica , Humanos , Masculino , Persona de Mediana Edad , Pronóstico
15.
Cereb Cortex ; 21(6): 1435-42, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21071619

RESUMEN

Recent evidence indicates experience-dependent brain volume changes in humans, but the functional and histological nature of such changes is unknown. Here, we report that adult men performing a cognitively demanding spatial navigation task every other day over 4 months display increases in hippocampal N-acetylaspartate (NAA) as measured with magnetic resonance spectroscopy. Unlike measures of brain volume, changes in NAA are sensitive to metabolic and functional aspects of neural and glia tissue and unlikely to reflect changes in microvasculature. Training-induced changes in NAA were, however, absent in carriers of the Met substitution in the brain-derived neurotrophic factor (BDNF) gene, which is known to reduce activity-dependent secretion of BDNF. Among BDNF Val homozygotes, increases in NAA were strongly related to the degree of practice-related improvement in navigation performance and normalized to pretraining levels 4 months after the last training session. We conclude that changes in demands on spatial navigation can alter hippocampal NAA concentrations, confirming epidemiological studies suggesting that mental experience may have direct effects on neural integrity and cognitive performance. BDNF genotype moderates these plastic changes, in line with the contention that gene-context interactions shape the ontogeny of complex phenotypes.


Asunto(s)
Ácido Aspártico/análogos & derivados , Factor Neurotrófico Derivado del Encéfalo/genética , Hipocampo/metabolismo , Polimorfismo de Nucleótido Simple/genética , Conducta Espacial/fisiología , Enseñanza/métodos , Valina/genética , Adulto , Análisis de Varianza , Ácido Aspártico/metabolismo , Mapeo Encefálico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Femenino , Lateralidad Funcional , Genotipo , Homocigoto , Humanos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Factores Sexuales , Adulto Joven
16.
Front Hum Neurosci ; 16: 852737, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35655926

RESUMEN

In aging humans, aerobic exercise interventions have been found to be associated with more positive or less negative changes in frontal and temporal brain areas, such as the anterior cingulate cortex (ACC) and hippocampus, relative to no-exercise control conditions. However, individual measures such as gray-matter (GM) probability may afford less reliable and valid conclusions about maintenance or losses in structural brain integrity than a latent construct based on multiple indicators. Here, we established a latent factor of GM structural integrity based on GM probability assessed by voxel-based morphometry, magnetization transfer saturation, and mean diffusivity. Based on this latent factor, we investigated changes in structural brain integrity during a six-month exercise intervention in brain regions previously reported in studies using volumetric approaches. Seventy-five healthy, previously sedentary older adults aged 63-76 years completed an at-home intervention study in either an exercise group (EG; n = 40) or in an active control group (ACG; n = 35). Measures of peak oxygen uptake (VO2peak) taken before and after the intervention revealed a time-by-group interaction, with positive average change in the EG and no reliable mean change in the ACG. Significant group differences in structural brain integrity changes were observed in the right and left ACC, right posterior cingulate cortex (PCC), and left juxtapositional lobule cortex (JLC). In all instances, average changes in the EG did not differ reliably from zero, whereas average changes in the ACG were negative, pointing to maintenance of structural brain integrity in the EG, and to losses in the ACG. Significant individual differences in change were observed for right ACC and left JLC. Following up on these differences, we found that exercising participants with greater fitness gains also showed more positive changes in structural integrity. We discuss the benefits and limitations of a latent-factor approach to changes in structural brain integrity, and conclude that aerobic fitness interventions are likely to contribute to brain maintenance in old age.

17.
Neuroimage ; 53(4): 1294-300, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20624473

RESUMEN

Most juridical systems recognize intentional non-actions - the failure to render assistance - as intentional acts by regarding them as in principle culpable. This raises the fundamental question whether intentional non-actions can be distinguished from simply not doing anything. Classical GLM analysis on functional magnetic resonance imaging (fMRI) data reveals that not doing anything is associated with resting state brain areas whereas intentionally non-acting is associated with brain activity in left inferior parietal lobe and left dorsal premotor cortex. By means of pattern classification we quantify the accuracy with which we can distinguish these two mental states on the basis of brain activity. In order to identify brain regions that harbour a distributed, overlapping representation of voluntary non-actions and the decision not to act we performed pattern classification on brain areas that did not appear in the GLM contrasts. The prediction rate is not reduced and we show that the prediction relies mostly on brain areas that have been associated with action production and motor imagery as supplementary motor area, right inferior frontal gyrus and right middle temporal area (V5/MT). Hence our data support the implicit assumption of legal practice that voluntary non-action shares important features with overt voluntary action.


Asunto(s)
Mapeo Encefálico , Encéfalo/fisiología , Descanso/fisiología , Adolescente , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
18.
Mov Disord ; 24(2): 168-75, 2009 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-18973249

RESUMEN

Corticobasal syndrome (CBS) is a progressive parkinsonian disease characterized by cortical and subcortical neuronal loss. Although motor disabilities are a core feature of CBS, the involvement of motor pathways in this condition has not been completely clarified. We used magnetic resonance diffusion tensor imaging (DTI) to study corticospinal and transcallosal motor projections in CBS, and applied fiber tractography to analyze the axonal integrity of white matter projections. Ten patients with CBS were compared with 10 age-matched healthy controls. Fiber tracts were computed using a Monte-Carlo simulation approach. Tract-specific mean values of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were determined. CBS patients showed a reduction of corticospinal tract (CST) fibers on the first affected side with significantly increased ADC and reduced FA values. In the corpus callosum (CC), particularly in the posterior trunk, patients also had significantly reduced fiber projections, with a higher ADC and lower FA than controls. This pattern indicates changes of the white matter integrity in both CST and CC. Thus, magnetic resonance DTI can be used to assess motor pathway involvement in CBS patients.


Asunto(s)
Axones/patología , Imagen de Difusión por Resonancia Magnética/métodos , Trastornos Parkinsonianos/patología , Tractos Piramidales/patología , Anciano , Anciano de 80 o más Años , Anisotropía , Cuerpo Calloso/patología , Femenino , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Método de Montecarlo , Trastornos Parkinsonianos/fisiopatología
19.
Nat Hum Behav ; 3(11): 1203-1214, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31501542

RESUMEN

For decades, research into memory decline in human cognitive ageing has focused on neocortical regions, the hippocampus and dopaminergic neuromodulation. Recent findings indicate that the locus coeruleus (LC) and noradrenergic neuromodulation may also play an important role in shaping memory development in later life. However, technical challenges in quantification of LC integrity have hindered the study of LC-cognition associations in humans. Using high-resolution, neuromelanin-sensitive magnetic resonance imaging, we found that individual differences in learning and memory were positively associated with LC integrity across a variety of memory tasks in both younger (n = 66) and older adults (n = 228). Moreover, we observed functionally relevant age differences confined to rostral LC. Older adults with a more 'youth-like' rostral LC also showed higher memory performance. These findings link non-invasive, in vivo indices of LC integrity to memory in ageing and highlight the role of the LC norepinephrine system in the decline of cognition.


Asunto(s)
Locus Coeruleus/fisiología , Memoria/fisiología , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Humanos , Locus Coeruleus/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Recuerdo Mental/fisiología , Persona de Mediana Edad , Neuroimagen
20.
Neuropsychologia ; 46(13): 3042-52, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18601938

RESUMEN

Age-related dysfunction in dopaminergic neuromodulation is assumed to contribute to age-associated memory impairment. However, to date there are no in vivo data on how structural parameters of the substantia nigra/ventral tegmental area (SN/VTA), the main origin of dopaminergic projections, relate to memory performance in healthy young and older adults. We investigated this relationship in a cross-sectional study including data from the hippocampus and frontal white matter (FWM) and also assessing working memory span and attention. In groups of young and older adults matched for the variance of their age distribution, gender and body mass index, we observed a robust positive correlation between Magnetization Transfer Ratio (MTR)--a measure of structural integrity--of the SN/VTA and FWM with verbal learning and memory performance among older adults, while there was a negative correlation in the young. Two additional imaging parameters, anisotropy of diffusion and diffusion coefficient, suggested that in older adults FWM changes reflected vascular pathology while SN/VTA changes pointed towards neuronal loss and loss of water content. The negative correlation in the young possibly reflected maturational changes. Multiple regression analyses indicated that in both young and older adults, SN/VTA MTR explained more variance of verbal learning and memory than FWM MTR or hippocampal MTR, and contributed less to explaining variance of working memory span. Together these findings indicate that structural integrity in the SN/VTA has a relatively selective impact on verbal learning and memory and undergoes specific changes from young adulthood to older age that qualitatively differ from changes in the FWM and hippocampus.


Asunto(s)
Envejecimiento/fisiología , Memoria/fisiología , Sustancia Negra/fisiología , Área Tegmental Ventral/fisiología , Aprendizaje Verbal/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA