Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Neuroinflammation ; 20(1): 303, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38110993

RESUMEN

Acute hyperbaric O2 (HBO) therapy after spinal cord injury (SCI) can reduce inflammation and increase neuronal survival. To our knowledge, it is unknown if these benefits of HBO require hyperbaric vs. normobaric hyperoxia. We used a C4 lateralized contusion SCI in adult male and female rats to test the hypothesis that the combination of hyperbaria and 100% O2 (i.e. HBO) more effectively mitigates spinal inflammation and neuronal loss, and enhances respiratory recovery, as compared to normobaric 100% O2. Experimental groups included spinal intact, SCI no O2 therapy, and SCI + 100% O2 delivered at normobaric pressure (1 atmosphere, ATA), or at 2- or 3 ATA. O2 treatments lasted 1-h, commenced within 2-h of SCI, and were repeated for 10 days. The spinal inflammatory response was assessed with transcriptomics (RNAseq) and immunohistochemistry. Gene co-expression network analysis showed that the strong inflammatory response to SCI was dramatically diminished by both hyper- and normobaric O2 therapy. Similarly, both HBO and normobaric O2 treatments reduced the prevalence of immunohistological markers for astrocytes (glial fibrillary acidic protein) and microglia (ionized calcium binding adaptor molecule) in the injured spinal cord. However, HBO treatment also had unique impacts not detected in the normobaric group including upregulation of an anti-inflammatory cytokine (interleukin-4) in the plasma, and larger inspiratory tidal volumes at 10-days (whole body-plethysmography measurements). We conclude that normobaric O2 treatment can reduce the spinal inflammatory response after SCI, but pressured O2 (i.e., HBO) provides further benefit.


Asunto(s)
Oxigenoterapia Hiperbárica , Traumatismos de la Médula Espinal , Ratas , Masculino , Femenino , Animales , Enfermedades Neuroinflamatorias , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/patología , Inflamación/metabolismo , Oxígeno/metabolismo
2.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37373368

RESUMEN

Doxorubicin (DOX) is a highly effective chemotherapy agent prescribed for cancer treatment. However, the clinical use of DOX is limited due to off-target toxicity in healthy tissues. In this regard, hepatic and renal metabolic clearance results in DOX accumulation within these organ systems. Within the liver and kidneys, DOX causes inflammation and oxidative stress, which promotes cytotoxic cellular signaling. While there is currently no standard of care to treat DOX hepatic- and nephrotoxicity, endurance exercise preconditioning may be an effective intervention to prevent elevations in liver alanine transaminase (ALT) and aspartate aminotransferase (AST) and to improve kidney creatinine clearance. To determine whether exercise preconditioning is sufficient to reduce liver and kidney toxicity resulting from acute exposure to DOX chemotherapy treatment, male and female Sprague-Dawley rats remained sedentary or were exercise trained prior to saline or DOX exposure. Our findings demonstrate that DOX treatment elevated AST and AST/ALT in male rats, with no effects of exercise preconditioning to prevent these increases. We also showed increased plasma markers of renin-angiotensin-aldosterone system (RAAS) activation and urine markers of proteinuria and proximal tubule damage, with male rats revealing greater differences compared to females. Exercise preconditioning showed improved urine creatinine clearance and reduced cystatin c in males, while females had reduced plasma angiotensin II (AngII) levels. Our results demonstrate both tissue- and sex-specific responses related to the effects of exercise preconditioning and DOX treatment on markers of liver and kidney toxicity.


Asunto(s)
Doxorrubicina , Hígado , Ratas , Masculino , Femenino , Animales , Ratas Sprague-Dawley , Creatinina/metabolismo , Doxorrubicina/toxicidad , Doxorrubicina/metabolismo , Hígado/metabolismo , Riñón/metabolismo , Estrés Oxidativo , Antibióticos Antineoplásicos/farmacología
3.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37175395

RESUMEN

Doxorubicin (DOX) is a chemotherapeutic agent highly effective at limiting cancer progression. Despite the efficacy of this anticancer drug, the clinical use of DOX is limited due to cardiotoxicity. The cardiac mitochondria are implicated as the primary target of DOX, resulting in inactivation of electron transport system complexes, oxidative stress, and iron overload. However, it is established that the cardiac mitochondrial subpopulations reveal differential responses to DOX exposure, with subsarcolemmal (SS) mitochondria demonstrating redox imbalance and the intermyofibrillar (IMF) mitochondria showing reduced respiration. In this regard, exercise training is an effective intervention to prevent DOX-induced cardiac dysfunction. Although it is clear that exercise confers mitochondrial protection, it is currently unknown if exercise training mitigates DOX cardiac mitochondrial toxicity by promoting beneficial adaptations to both the SS and IMF mitochondria. To test this, SS and IMF mitochondria were isolated from sedentary and exercise-preconditioned female Sprague Dawley rats exposed to acute DOX treatment. Our findings reveal a greater effect of exercise preconditioning on redox balance and iron handling in the SS mitochondria of DOX-treated rats compared to IMF, with rescue of cardiolipin synthase 1 expression in both subpopulations. These results demonstrate that exercise preconditioning improves mitochondrial homeostasis when combined with DOX treatment, and that the SS mitochondria display greater protection compared to the IMF mitochondria. These data provide important insights into the molecular mechanisms that are in part responsible for exercise-induced protection against DOX toxicity.


Asunto(s)
Cardiolipinas , Sobrecarga de Hierro , Ratas , Femenino , Animales , Cardiolipinas/metabolismo , Ratas Sprague-Dawley , Doxorrubicina/toxicidad , Mitocondrias Cardíacas/metabolismo , Cardiotoxicidad/metabolismo , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/metabolismo , Antibióticos Antineoplásicos/toxicidad
4.
Crit Care Explor ; 6(8): e1144, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39162648

RESUMEN

CONTEXT: Sepsis leads to multiple organ dysfunction and negatively impacts patient outcomes. Skeletal muscle disuse is a significant comorbidity in septic patients during their ICU stay due to prolonged immobilization. HYPOTHESIS: Combination of sepsis and muscle disuse will promote a unique proteomic signature in skeletal muscle in comparison to disuse and sepsis separately. METHODS AND MODELS: Following cecal ligation and puncture (CLP) or Sham surgeries, mice were subjected to hindlimb suspension (HLS) or maintained normal ambulation (NA). Tibialis anterior muscles from 24 C57BL6/J male mice were harvested for proteomic analysis. Proteomic profiles were assessed using nano-liquid chromatography with tandem mass spectrometry, followed by data analysis including Partial Least Squares Discriminant Analysis (PLS-DA), to compare the differential protein expression across groups. RESULTS: A total of 2876 differentially expressed proteins were identified, with marked differences between groups. In mice subjected to CLP and HLS combined, there was a distinctive proteomic signature characterized by a significant decrease in the expression of proteins involved in mitochondrial function and muscle metabolism, alongside a marked increase in proteins related to muscle degradation pathways. The PLS-DA demonstrated a clear separation among experimental groups, highlighting the unique profile of the CLP/HLS group. This suggests an important interaction between sepsis-induced inflammation and disuse atrophy mechanisms in sepsis-induced myopathy. INTERPRETATIONS AND CONCLUSIONS: Our findings reveal a complex proteomic landscape in skeletal muscle exposed to sepsis and disuse, consistent with an exacerbation of muscle protein degradation under these combined stressors. The identified proteins and their roles in cellular stress responses and muscle pathology provide potential targets for intervention to mitigate muscle dysfunction in septic conditions, highlighting the importance of addressing both sepsis and disuse concurrently in clinical and experimental settings.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Músculo Esquelético , Proteómica , Sepsis , Animales , Ratones , Sepsis/metabolismo , Sepsis/fisiopatología , Músculo Esquelético/metabolismo , Masculino , Proteómica/métodos , Miembro Posterior/metabolismo , Suspensión Trasera , Atrofia Muscular/metabolismo , Atrofia Muscular/patología
5.
J Vis Exp ; (208)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38949310

RESUMEN

Sepsis is a major cause of in-hospital deaths. Improvements in treatment result in a greater number of sepsis survivors. Approximately 75% of the survivors develop muscle weakness and atrophy, increasing the incidence of hospital readmissions and mortality. However, the available preclinical models of sepsis do not address skeletal muscle disuse, a key component for the development of sepsis-induced myopathy. Our objective in this protocol is to provide a step-by-step guideline for a mouse model that reproduces the clinical setting experienced by a bedridden septic patient. Male C57Bl/6 mice were used to develop this model. Mice underwent cecal ligation and puncture (CLP) to induce sepsis. Four days post-CLP, mice were subjected to hindlimb suspension (HLS) for seven days. Results were compared with sham-matched surgeries and/or animals with normal ambulation (NA). Muscles were dissected for in vitro muscle mechanics and morphological assessments. The model results in marked muscle atrophy and weakness, a similar phenotype observed in septic patients. The model represents a platform for testing potential therapeutic strategies for the mitigation of sepsis-induced myopathy.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Enfermedades Musculares , Sepsis , Animales , Sepsis/complicaciones , Ratones , Masculino , Enfermedades Musculares/etiología , Enfermedades Musculares/patología , Atrofia Muscular/etiología , Atrofia Muscular/patología , Músculo Esquelético , Suspensión Trasera
6.
Antioxidants (Basel) ; 11(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36290796

RESUMEN

Cardiorespiratory dysfunction resulting from doxorubicin (DOX) chemotherapy treatment is a debilitating condition affecting cancer patient outcomes and quality of life. DOX treatment promotes cardiac and respiratory muscle pathology due to enhanced reactive oxygen species (ROS) production, mitochondrial dysfunction and impaired muscle contractility. In contrast, hyperbaric oxygen (HBO) therapy is considered a controlled oxidative stress that can evoke a substantial and sustained increase in muscle antioxidant expression. This HBO-induced increase in antioxidant capacity has the potential to improve cardiac and respiratory (i.e., diaphragm) muscle redox balance, preserving mitochondrial function and preventing muscle dysfunction. Therefore, we determined whether HBO therapy prior to DOX treatment is sufficient to enhance muscle antioxidant expression and preserve muscle redox balance and cardiorespiratory muscle function. To test this, adult female Sprague Dawley rats received HBO therapy (2 or 3 atmospheres absolute (ATA), 100% O2, 1 h/day) for 5 consecutive days prior to acute DOX treatment (20 mg/kg i.p.). Our data demonstrate that 3 ATA HBO elicits a greater antioxidant response compared to 2 ATA HBO. However, these effects did not correspond with beneficial adaptations to cardiac systolic and diastolic function or diaphragm muscle force production in DOX treated rats. These findings suggest that modulating muscle antioxidant expression with HBO therapy is not sufficient to prevent DOX-induced cardiorespiratory dysfunction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA