Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Gastroenterology ; 152(5): 1126-1138.e6, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28065787

RESUMEN

BACKGROUND & AIMS: The role of the intestine in the maintenance of cholesterol homeostasis increasingly is recognized. Fecal excretion of cholesterol is the last step in the atheroprotective reverse cholesterol transport pathway, to which biliary and transintestinal cholesterol excretion (TICE) contribute. The mechanisms controlling the flux of cholesterol through the TICE pathway, however, are poorly understood. We aimed to identify mechanisms that regulate and stimulate TICE. METHODS: We performed studies with C57Bl/6J mice, as well as with mice with intestine-specific knockout of the farnesoid X receptor (FXR), mice that express an FXR transgene specifically in the intestine, and ABCG8-knockout mice. Mice were fed a control diet or a diet supplemented with the FXR agonist PX20606, with or without the cholesterol absorption inhibitor ezetimibe. Some mice with intestine-specific knockout of FXR were given daily injections of fibroblast growth factor (FGF)19. To determine fractional cholesterol absorption, mice were given intravenous injections of cholesterol D5 and oral cholesterol D7. Mice were given 13C-acetate in drinking water for measurement of cholesterol synthesis. Bile cannulations were performed and biliary cholesterol secretion rates were assessed. In a separate set of experiments, bile ducts of male Wistar rats were exteriorized, allowing replacement of endogenous bile by a model bile. RESULTS: In mice, we found TICE to be regulated by intestinal FXR via induction of its target gene Fgf15 (FGF19 in rats and human beings). Stimulation of this pathway caused mice to excrete up to 60% of their total cholesterol content each day. PX20606 and FGF19 each increased the ratio of muricholate:cholate in bile, inducing a more hydrophilic bile salt pool. The altered bile salt pool stimulated robust secretion of cholesterol into the intestinal lumen via the sterol-exporting heterodimer adenosine triphosphate binding cassette subfamily G member 5/8 (ABCG5/G8). Of note, the increase in TICE induced by PX20606 was independent of changes in cholesterol absorption. CONCLUSIONS: Hydrophilicity of the bile salt pool, controlled by FXR and FGF15/19, is an important determinant of cholesterol removal via TICE. Strategies that alter bile salt pool composition might be developed for the prevention of cardiovascular disease. Transcript profiling: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=irsrayeohfcntqx&acc=GSE74101.


Asunto(s)
Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/genética , Ácidos y Sales Biliares/metabolismo , Colesterol/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Eliminación Intestinal/genética , Mucosa Intestinal/metabolismo , Lipoproteínas/genética , Receptores Citoplasmáticos y Nucleares/genética , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/metabolismo , Animales , Anticolesterolemiantes/farmacología , Benzoatos/farmacología , Conductos Biliares , Ezetimiba/farmacología , Eliminación Intestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Isoxazoles/farmacología , Lipoproteínas/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Ratas , Ratas Wistar , Receptores Citoplasmáticos y Nucleares/agonistas
2.
FASEB J ; 29(4): 1153-64, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25477282

RESUMEN

Liver X receptor (LXR) agonists exert potent antiatherosclerotic actions but simultaneously induce excessive triglyceride (TG) accumulation in the liver. To obtain a detailed insight into the underlying mechanism of hepatic TG accumulation, we used a novel computational modeling approach called analysis of dynamic adaptations in parameter trajectories (ADAPT). We revealed that both input and output fluxes to hepatic TG content are considerably induced on LXR activation and that in the early phase of LXR agonism, hepatic steatosis results from only a minor imbalance between the two. It is generally believed that LXR-induced hepatic steatosis results from increased de novo lipogenesis (DNL). In contrast, ADAPT predicted that the hepatic influx of free fatty acids is the major contributor to hepatic TG accumulation in the early phase of LXR activation. Qualitative validation of this prediction showed a 5-fold increase in the contribution of plasma palmitate to hepatic monounsaturated fatty acids on acute LXR activation, whereas DNL was not yet significantly increased. This study illustrates that complex effects of pharmacological intervention can be translated into distinct patterns of metabolic regulation through state-of-the-art mathematical modeling.


Asunto(s)
Hígado Graso/etiología , Hígado Graso/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Animales , Aterosclerosis/tratamiento farmacológico , Simulación por Computador , Ácidos Grasos no Esterificados/metabolismo , Hidrocarburos Fluorados/farmacología , Hidrocarburos Fluorados/toxicidad , Lipogénesis , Lipoproteínas VLDL/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Receptores X del Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Receptores Nucleares Huérfanos/agonistas , Receptores Nucleares Huérfanos/deficiencia , PPAR gamma/deficiencia , PPAR gamma/genética , PPAR gamma/metabolismo , Sulfonamidas/farmacología , Sulfonamidas/toxicidad , Biología de Sistemas , Triglicéridos/metabolismo
3.
J Hepatol ; 63(3): 697-704, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26022694

RESUMEN

BACKGROUND & AIMS: Regulation of bile acid homeostasis in mammals is a complex process regulated via extensive cross-talk between liver, intestine and intestinal microbiota. Here we studied the effects of gut microbiota on bile acid homeostasis in mice. METHODS: Bile acid homeostasis was assessed in four mouse models. Germfree mice, conventionally-raised mice, Asbt-KO mice and intestinal-specific Gata4-iKO mice were treated with antibiotics (bacitracin, neomycin and vancomycin; 100 mg/kg) for five days and subsequently compared with untreated mice. RESULTS: Attenuation of the bacterial flora by antibiotics strongly reduced fecal excretion and synthesis of bile acids, but increased the expression of the bile acid synthesis enzyme CYP7A1. Similar effects were seen in germfree mice. Intestinal bile acid absorption was increased and accompanied by increases in plasma bile acid levels, biliary bile acid secretion and enterohepatic cycling of bile acids. In the absence of microbiota, the expression of the intestinal bile salt transporter Asbt was strongly increased in the ileum and was also expressed in more proximal parts of the small intestine. Most of the effects of antibiotic treatment on bile acid homeostasis could be prevented by genetic inactivation of either Asbt or the transcription factor Gata4. CONCLUSIONS: Attenuation of gut microbiota alters Gata4-controlled expression of Asbt, increasing absorption and decreasing synthesis of bile acids. Our data support the concept that under physiological conditions microbiota stimulate Gata4, which suppresses Asbt expression, limiting the expression of this transporter to the terminal ileum. Our studies expand current knowledge on the bacterial control of bile acid homeostasis.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Factor de Transcripción GATA4/fisiología , Microbioma Gastrointestinal/fisiología , Absorción Intestinal , Transportadores de Anión Orgánico Sodio-Dependiente/fisiología , Simportadores/fisiología , Animales , Antibacterianos/farmacología , Colesterol 7-alfa-Hidroxilasa/genética , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/análisis
4.
J Cell Biol ; 178(6): 913-24, 2007 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-17785516

RESUMEN

Embryonic stem (ES) cells are able to grow indefinitely (self-renewal) and have the potential to differentiate into all adult cell types (pluripotency). The regulatory network that controls pluripotency is well characterized, whereas the molecular basis for the transition from self-renewal to the differentiation of ES cells is much less understood, although dynamic epigenetic gene silencing and chromatin compaction are clearly implicated. In this study, we report that UTF1 (undifferentiated embryonic cell transcription factor 1) is involved in ES cell differentiation. Knockdown of UTF1 in ES and carcinoma cells resulted in a substantial delay or block in differentiation. Further analysis using fluorescence recovery after photobleaching assays, subnuclear fractionations, and reporter assays revealed that UTF1 is a stably chromatin-associated transcriptional repressor protein with a dynamic behavior similar to core histones. An N-terminal Myb/SANT domain and a C-terminal domain containing a putative leucine zipper are required for these properties of UTF1. These data demonstrate that UTF1 is a strongly chromatin-associated protein involved in the initiation of ES cell differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Animales , Línea Celular Tumoral , Células Madre Embrionarias/citología , Proteínas Fluorescentes Verdes/genética , Humanos , Ratones , Mutación , Proteínas Nucleares/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Transactivadores/genética
5.
Curr Med Chem ; 21(24): 2822-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24606522

RESUMEN

In the last decade, it became clear that bile acids, in addition to their role in intestinal absorption of lipids and fat-soluble vitamins, are major regulators of metabolism. They activate signal transduction pathways through binding to the specific bile acid receptors TGR5 and FXR. Indirectly, bile acids influence metabolism via modification of the gut microbiota ecosystem. The relation between bile acid metabolism and gut microbiota composition is very complex whereas gut microbiota modulates bile acid structure, creating a complex bile acid pool consisting of a mixture of differentially structured species, bile acids alter gut microbiota by disturbing bacterial membrane integrity. In addition, to the effects on glucose and energy homeostasis, recent literature ascribed a role for bile acid signaling in control of inflammation and regulation of the nervous system. In this review, we discuss a selection of recent published studies describing the effects of intestinal bile acid signaling on health and disease.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Mucosa Intestinal/metabolismo , Animales , Enfermedad , Salud , Humanos , Intestinos/microbiología , Microbiota
6.
PLoS One ; 9(12): e115028, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25506828

RESUMEN

The nuclear receptor FXR acts as an intracellular bile salt sensor that regulates synthesis and transport of bile salts within their enterohepatic circulation. In addition, FXR is involved in control of a variety of crucial metabolic pathways. Four FXR splice variants are known, i.e. FXRα1-4. Although these isoforms show differences in spatial and temporal expression patterns as well as in transcriptional activity, the physiological relevance hereof has remained elusive. We have evaluated specific roles of hepatic FXRα2 and FXRα4 by stably expressing these isoforms using liver-specific self-complementary adeno-associated viral vectors in total body FXR knock-out mice. The hepatic gene expression profile of the FXR knock-out mice was largely normalized by both isoforms. Yet, differential effects were also apparent; FXRα2 was more effective in reducing elevated HDL levels and transrepressed hepatic expression of Cyp8b1, the regulator of cholate synthesis. The latter coincided with a switch in hydrophobicity of the bile salt pool. Furthermore, FXRα2-transduction caused an increased neutral sterol excretion compared to FXRα4 without affecting intestinal cholesterol absorption. Our data show, for the first time, that hepatic FXRα2 and FXRα4 differentially modulate bile salt and lipoprotein metabolism in mice.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Lipoproteínas/metabolismo , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Ratones Noqueados , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética
7.
Atherosclerosis ; 222(2): 382-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22481067

RESUMEN

OBJECTIVE: Pharmacological LXR activation has anti-atherosclerotic actions in animal models. Part of these beneficial effects may be explained by accelerated reverse cholesterol transport since both plasma high density lipoprotein (HDL) cholesterol and fecal neutral sterol secretion are higher upon LXR activation. Mechanisms underlying these LXR-mediated effects have not been fully elucidated. METHODS: We investigated the roles of the isoforms LXRα and LXRß and the HDL cholesterol uptake receptor SR-B1 in modulation of cholesterol metabolism upon treatment of mice with the LXR ligand T0901317. RESULTS: HDL cholesterol was maximally 60% increased in a time-dependent fashion due to appearance of more and larger HDL particles. Fecal neutral sterol secretion was maximally induced after 1 week treatment. T0901317 treatment induced fecal neutral sterol secretion by ~300% in wild-type but not in Lxrα deficient mice. Surprisingly, LXR activation reduced SR-B1 protein amount in hepatic membranes, suggesting that this might contribute to elevated HDL cholesterol. However, T0901317 still elevated plasma HDL cholesterol in Sr-b1 deficient mice, suggesting that SR-B1 is not the only step involved in LXR-mediated induction of plasma HDL cholesterol. In addition, SR-B1 is not essential for LXR-induced cholesterol removal from the body. CONCLUSION: Induction of fecal neutral sterol secretion by T0901317 critically depends on LXRα but not on LXRß. LXR activation reduces SR-B1 in hepatic membranes, probably partly contributing to elevated HDL cholesterol. SR-B1 is not required to enhance fecal neutral sterol secretion.


Asunto(s)
Membrana Celular/efectos de los fármacos , HDL-Colesterol/metabolismo , Hidrocarburos Fluorados/farmacología , Hígado/efectos de los fármacos , Receptores Nucleares Huérfanos/agonistas , Receptores Depuradores de Clase B/metabolismo , Sulfonamidas/farmacología , Transportador 1 de Casete de Unión a ATP , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5 , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8 , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Membrana Celular/metabolismo , HDL-Colesterol/sangre , Regulación hacia Abajo , Heces/química , Lipoproteínas/metabolismo , Hígado/metabolismo , Receptores X del Hígado , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Nucleares Huérfanos/deficiencia , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/metabolismo , Tamaño de la Partícula , Receptores Depuradores de Clase B/deficiencia , Receptores Depuradores de Clase B/genética , Factores de Tiempo , Regulación hacia Arriba
8.
Mol Pharm ; 6(2): 366-74, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19227971

RESUMEN

Adenoviruses are common pathogens associated with respiratory diseases, gastrointestinal illnesses and/or conjunctivitis. Currently, this virus is used as a vector in gene therapy trials. The promise of viral gene therapy applications is substantially reduced because the virus is cleared by liver macrophages upon systemic administration. The mechanism underlying adenoviral tropism to and degradation in macrophages is poorly understood. We identified a new adenoviral receptor, the scavenger receptor A (SR-A), responsible for uptake of the virus in macrophages. CHO cells expressing SR-A showed increased viral transgene expression when compared with wild type cells. Preincubation of J774 macrophage cells with SR-A ligands decreased significantly adenoviral uptake. Electron-microscopy analysis of infected J774 cells showed activation of a viral degradation pathway. Infection of mice with adenovirus resulted in a substantial decrease of the virus in liver macrophages when SR-A was blocked. Our data provide a basis for understanding of the adenoviral uptake and degradation mechanism in macrophages in vitro and in vivo. Inhibition of adenoviral SR-A uptake can be utilized in gene therapy applications to increase its efficiency and efficacy.


Asunto(s)
Adenoviridae/patogenicidad , Hígado/efectos de los fármacos , Macrófagos/efectos de los fármacos , Receptores Depuradores/antagonistas & inhibidores , Adenoviridae/genética , Infecciones por Adenoviridae/virología , Animales , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Vectores Genéticos , Técnicas para Inmunoenzimas , Pruebas de Función Hepática , Ratones , Ratones Endogámicos C57BL , Poli I/farmacología , Receptores Depuradores/metabolismo , Transfección , Transgenes/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA