Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Science ; 385(6705): 174-178, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38991083

RESUMEN

One of the hallmarks of living organisms is their capacity for self-organization and regeneration, which requires a tight integration of metabolic and genetic networks. We sought to construct a linked metabolic and genetic network in vitro that shows such lifelike behavior outside of a cellular context and generates its own building blocks from nonliving matter. We integrated the metabolism of the crotonyl-CoA/ethyl-malonyl-CoA/hydroxybutyryl-CoA cycle with cell-free protein synthesis using recombinant elements. Our network produces the amino acid glycine from CO2 and incorporates it into target proteins following DNA-encoded instructions. By orchestrating ~50 enzymes we established a basic cell-free operating system in which genetically encoded inputs into a metabolic network are programmed to activate feedback loops allowing for self-integration and (partial) self-regeneration of the complete system.


Asunto(s)
Dióxido de Carbono , Sistema Libre de Células , Glicina , Redes y Vías Metabólicas , Biosíntesis de Proteínas , Acilcoenzima A/metabolismo , Dióxido de Carbono/metabolismo , Retroalimentación Fisiológica , Redes Reguladoras de Genes , Glicina/biosíntesis , Glicina/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-37903081

RESUMEN

Lipid and polymer vesicles provide versatile means of creating systems that mimic the architecture of cells. However, these constructs cannot mimic the adaptive compartmentalization observed in cells, where the assembly and disassembly of subcompartments are dynamically modulated by environmental cues. Here, we describe a fully polymeric microreactor with a coacervate-in-vesicle architecture that exhibits an adaptive response to pH. The system was fabricated by microfluidic generation of semipermeable biomimetic polymer vesicles within 1 min using oleyl alcohol as the oil phase. The polymersomes allowed for the diffusion of protons and substrates acting as external signals. Using this method, we were able to construct adaptive microreactors containing internal polyelectrolyte-based catalytic organelles capable of sequestering and localizing enzymes and reaction products in a dynamic process driven by an external stimulus. This approach provides a platform for the rapid and efficient construction of robust adaptive microreactors that can be used in catalysis, biosensing, and cell mimicry.

3.
Microorganisms ; 9(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374556

RESUMEN

Entomopathogenic bacteria and fungi are quite frequently found in soils and insect cadavers. The first step in utilizing these microbes as biopesticides is to isolate them, and several culture media and insect baiting procedures have been tested in this direction. In this work, the authors review the current techniques that have been developed so far, in the last five decades, and display brief protocols which can be adopted for the isolations of these entomopathogens. Among bacteria, this review focuses on Serratia spp. and bacteria from the class Bacilli. Among fungi, the review focuses those from the order Hypocreales, for example, genera Beauveria, Clonostachys, Lecanicillium, Metarhizium, and Purpureocillium. The authors chose these groups of entomopathogenic bacteria and fungi based on their importance in the microbial biopesticide market.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA