Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947810

RESUMEN

The development of a simple and low cost electrochemical impedance immunosensor based on screen printed gold electrode for rapid detection of Escherichia coli in water is reported. The immunosensor is fabricated by immobilizing anti-E. coli antibodies onto a gold surface in a covalent way by the photochemical immobilization technique, a simple procedure able to bind antibodies upright onto gold surfaces. Impedance spectra are recorded in 0.01 M phosphate buffer solution (PBS) containing 10 mM Fe(CN)63-/Fe(CN)64- as redox probe. The Nyquist plots can be modelled with a modified Randles circuit, identifying the charge transfer resistance Rct as the relevant parameter after the immobilization of antibodies, the blocking with BSA and the binding of E. coli. The introduction of a standard amplification procedure leads to a significant enhancement of the impedance increase, which allows one to measure E. coli in drinking water with a limit of detection of 3 × 101 CFU mL-1 while preserving the rapidity of the method that requires only 1 h to provide a "yes/no" response. Additionally, by applying the Langmuir adsorption model, we are able to describe the change of Rct in terms of the "effective" electrode, which is modified by the detection of the analyte whose microscopic conducting properties can be quantified.


Asunto(s)
Anticuerpos Inmovilizados/química , Técnicas Biosensibles , Agua Potable/microbiología , Escherichia coli O157/aislamiento & purificación , Impedancia Eléctrica , Electrodos , Escherichia coli O157/patogenicidad , Oro/química , Humanos , Límite de Detección , Microbiología del Agua
2.
Vet Sci ; 8(6)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073108

RESUMEN

The microbiota of the gastrointestinal tract (GIT) are crucial for host health and production efficiency in ruminants. Its microbial composition can be influenced by several endogenous and exogenous factors. In the beef and dairy industry, the possibility to manipulate gut microbiota by diet and management can have important health and economic implications. The aims of this study were to characterize the different GIT site microbiota in water buffalo and evaluate the influence of diet on GIT microbiota in this animal species. We characterized and compared the microbiota of the rumen, large intestine and feces of water buffaloes fed two different diets with different non-structural carbohydrates/crude proteins (NSC/CP) ratios. Our results indicated that Bacteroidetes, Firmicutes and Proteobacteria were the most abundant phyla in all the GIT sites, with significant differences in microbiota composition between body sites both within and between groups. This result was particularly evident in the large intestine, where beta diversity analysis displayed clear clustering of samples depending on the diet. Moreover, we found a difference in diet digestibility linked to microbiota modification at the GIT level conditioned by NSC/CP levels. Diet strongly influences GIT microbiota and can therefore modulate specific GIT microorganisms able to affect the health status and performance efficiency of adult animals.

3.
J Fungi (Basel) ; 6(2)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531985

RESUMEN

A diketopiperazine has been purified from a culture filtrate of the endophytic fungus Paraphaeosphaeria sporulosa, isolated from healthy tissues of strawberry plants in a survey of microbes as sources of anti-bacterial metabolites. Its structure has been determined by nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC-MS) analyses and was found to be identical to cyclo(L-Pro-L-Phe) purified from species of other fungal genera. This secondary metabolite has been selected following bioguided-assay fractionation against two strains of Salmonella enterica, the causal agent of bovine gastroenteritis. The diketopiperazine cyclo(L-Pro-L-Phe), isolated for the first time from Paraphaeosphaeria species, showed minimum inhibitory concentration (MIC) values of 71.3 and 78.6 µg/mL against the two S. enterica strains. This finding may be significant in limiting the use of synthetic antibiotics in animal husbandry and reducing the emergence of bacterial multidrug resistance. Further in vivo experiments of P. sporulosa diketopiperazines are important for the future application of these metabolites.

4.
J Fungi (Basel) ; 6(4)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339378

RESUMEN

Biocontrol fungal strains of the genus Trichoderma can antagonize numerous plant pathogens and promote plant growth using different mechanisms of action, including the production of secondary metabolites (SMs). In this work we analyzed the effects of repeated applications of selected Trichoderma strains or SMs on young olive trees on the stimulation of plant growth and on the development of olive leaf spot disease caused by Fusicladium oleagineum. In addition, metabolomic analyses and gene expression profiles of olive leaves were carried out by LC-MS Q-TOF and real-time RT-PCR, respectively. A total of 104 phenolic compounds were detected from olive leave extracts and 20 were putatively identified. Targeted and untargeted approaches revealed significant differences in both the number and type of phenolic compounds accumulated in olive leaves after Trichoderma applications, as compared to water-treated plants. Different secoiridoids were less abundant in treated plants than in controls, while the accumulation of flavonoids (including luteolin and apigenin derivatives) increased following the application of specific Trichoderma strain. The induction of defense-related genes, and of genes involved in the synthesis of the secoiridoid oleuropein, was also analyzed and revealed a significant variation of gene expression according to the strain or metabolite applied.

5.
PLoS One ; 15(2): e0228936, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32084150

RESUMEN

A total of fifteen potential methyl t-butyl ether (MtBE)-degrading bacterial strains were isolated from contaminated soil. They have been identified as belonging to the genera Bacillus, Pseudomonas, Kocuria, Janibacter, Starkeya, Bosea, Mycolicibacterium, and Rhodovarius. Bacillus aryabhattai R1B, S. novella R8b, and M. mucogenicum R8i were able to grow using MtBE as carbon source, exhibiting different growth behavior and contaminant degradation ability. Their biocontrol ability was tested against various fungal pathogens. Both S. novella R8b and B. aryabhattai were effective in reducing the development of necrotic areas on leaves within 48 hours from Botritys cinerea and Alternaria alternata inoculation. Whereas, M. mucogenicum effectively controlled B. cinerea after 72 hours. Similar results were achieved using Pythium ultimum, in which the application of isolated bacteria increased seed germination. Only M. mucogenicum elicited tomato plants resistance against B. cinerea. This is the first report describing the occurrence of bioremediation and biocontrol activities in M. mucogenicum, B. aryabhattai and S. novella species. The production of maculosin and its antibiotic activity against Rhizoctonia solani has been reported for first time from S. novella. Our results highlight the importance of multidisciplinary approaches to achieve a consistent selection of bacterial strains useful for plant protection and bioremediation purposes.


Asunto(s)
Bacterias/aislamiento & purificación , Biodegradación Ambiental , Éteres Metílicos/toxicidad , Alphaproteobacteria/aislamiento & purificación , Alphaproteobacteria/metabolismo , Bacillus/aislamiento & purificación , Bacillus/metabolismo , Bacterias/metabolismo , Solanum lycopersicum/microbiología , Éteres Metílicos/química , Mycobacteriaceae/aislamiento & purificación , Mycobacteriaceae/metabolismo , Enfermedades de las Plantas/microbiología , Rhizoctonia/crecimiento & desarrollo , Suelo , Microbiología del Suelo
6.
Antioxidants (Basel) ; 9(7)2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32635186

RESUMEN

Food plays a central role in health, especially through consumption of plant-derived foods. Functional foods, supplements, and nutraceuticals are increasingly entering the market to respond to consumer demand for healthy products. They are foods, supplements, and ingredients which offer health benefits beyond the standard nutritional value. Some benefits are associated with phenolic compounds and phytochemicals with antioxidant properties. An olive pâté (OP) was added with antioxidants derived from olive mill wastewater (OMWW) to obtain a functional product rich in phenolic compounds. The olive pâté is produced from the ground olive pericarp, which shows an excellent natural antioxidant content. The OMWW is a waste product from oil processing, which is also rich in phenolic compounds. The result was a product rich in trans-resveratrol, OH tyrosol, and tyrosol in concentrations such as satisfying the European community's claims regarding the possible antioxidant action on plasma lipids with excellent shelf-life stability. The total phenolic content was assayed by a colorimetric method, the antioxidant activity by the ABTS [(2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)] test, the phenolic profile by Q Exactive Orbitrap LC-MS/MS. The shelf-life stability was confirmed by yeast, molds, and total microbial count, pH, and water activity determinations, and the best pasteurization parameters were determined. The palatability was judged as excellent.

7.
ACS Sens ; 2(7): 947-954, 2017 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-28750539

RESUMEN

The development of fast and ultrasensitive methods to detect bacterial pathogens at low concentrations is of high relevance for human and animal health care and diagnostics. In this context, surface-enhanced Raman scattering (SERS) offers the promise of a simplified, rapid, and high-sensitive detection of biomolecular interactions with several advantages over previous assay methodologies. In this work, we have conceived reproducible SERS nanosensors based on tailored multilayer octupolar nanostructures which can combine high enhancement factor and remarkable molecular selectivity. We show that coating novel multilayer octupolar metastructures with proper self-assembled monolayer (SAM) and immobilized phages can provide label-free analysis of pathogenic bacteria via SERS leading to a giant increase in SERS enhancement. The strong relative intensity changes of about 2100% at the maximum scattered SERS wavelength, induced by the Brucella bacterium captured, demonstrate the performance advantages of the bacteriophage sensing scheme. We performed measurements at the single-cell level thus allowing fast identification in less than an hour without any demanding sample preparation process. Our results based on designing well-controlled octupolar coupling platforms open up new opportunities toward the use of bacteriophages as recognition elements for the creation of SERS-based multifunctional biochips for rapid culture and label-free detection of bacteria.

8.
Genome Announc ; 4(5)2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27688333

RESUMEN

The bacteriophage 118970_sal3 was isolated from water buffalo feces in southern Italy, exhibiting lytic activity against Salmonella enterica serovar Typhimurium. This bacteriophage belongs to the Myoviridae family and has a 39,464-bp double-stranded DNA (ds-DNA) genome containing 53 coding sequences (CDSs).

9.
Genome Announc ; 4(5)2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27688334

RESUMEN

The bacteriophage 100268_sal2 was isolated from water buffalo feces in southern Italy, exhibiting lytic activity against several subspecies of Salmonella enterica This bacteriophage belongs to the Siphoviridae family and has a 125,114-bp double-stranded DNA (ds-DNA) genome containing 188 coding sequences (CDSs).

10.
Genome Announc ; 4(6)2016 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-27856572

RESUMEN

Three bacteriophages, 118970_sal1, 118970_sal2, and 64795_sal3, were isolated from water buffalo feces in southern Italy, exhibiting lytic activity against Salmonella enterica serovar Enteritidis. These bacteriophages belong to the Siphoviridae family and have a 60,113-bp, 123,930-bp, and 48,094-bp double-stranded DNA (dsDNA) genome containing 72, 173, and 80 coding sequences (CDSs), respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA