Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Brain ; 147(5): 1784-1798, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38387080

RESUMEN

The Huntington's disease mutation is a CAG repeat expansion in the huntingtin gene that results in an expanded polyglutamine tract in the huntingtin protein. The CAG repeat is unstable and expansions of hundreds of CAGs have been detected in Huntington's disease post-mortem brains. The age of disease onset can be predicted partially from the length of the CAG repeat as measured in blood. Onset age is also determined by genetic modifiers, which in six cases involve variation in DNA mismatch repair pathways genes. Knocking-out specific mismatch repair genes in mouse models of Huntington's disease prevents somatic CAG repeat expansion. Taken together, these results have led to the hypothesis that somatic CAG repeat expansion in Huntington's disease brains is required for pathogenesis. Therefore, the pathogenic repeat threshold in brain is longer than (CAG)40, as measured in blood, and is currently unknown. The mismatch repair gene MSH3 has become a major focus for therapeutic development, as unlike other mismatch repair genes, nullizygosity for MSH3 does not cause malignancies associated with mismatch repair deficiency. Potential treatments targeting MSH3 currently under development include gene therapy, biologics and small molecules, which will be assessed for efficacy in mouse models of Huntington's disease. The zQ175 knock-in model carries a mutation of approximately (CAG)185 and develops early molecular and pathological phenotypes that have been extensively characterized. Therefore, we crossed the mutant huntingtin allele onto heterozygous and homozygous Msh3 knockout backgrounds to determine the maximum benefit of targeting Msh3 in this model. Ablation of Msh3 prevented somatic expansion throughout the brain and periphery, and reduction of Msh3 by 50% decreased the rate of expansion. This had no effect on the deposition of huntingtin aggregation in the nuclei of striatal neurons, nor on the dysregulated striatal transcriptional profile. This contrasts with ablating Msh3 in knock-in models with shorter CAG repeat expansions. Therefore, further expansion of a (CAG)185 repeat in striatal neurons does not accelerate the onset of molecular and neuropathological phenotypes. It is striking that highly expanded CAG repeats of a similar size in humans cause disease onset before 2 years of age, indicating that somatic CAG repeat expansion in the brain is not required for pathogenesis. Given that the trajectory for somatic CAG expansion in the brains of Huntington's disease mutation carriers is unknown, our study underlines the importance of administering treatments targeting somatic instability as early as possible.


Asunto(s)
Proteína Huntingtina , Enfermedad de Huntington , Expansión de Repetición de Trinucleótido , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Animales , Humanos , Expansión de Repetición de Trinucleótido/genética , Ratones , Proteína Huntingtina/genética , Proteína 3 Homóloga de MutS/genética , Modelos Animales de Enfermedad , Proteínas del Tejido Nervioso/genética , Encéfalo/patología , Encéfalo/metabolismo
2.
DNA Cell Biol ; 24(7): 410-31, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16008510

RESUMEN

Administration of endotoxin (LPS) in humans results in profound physiological responses, including activation of peripheral blood mononuclear cells and the release of inflammatory factors. The time course of the response of selected inflammatory proteins was examined in healthy subjects (n = 6) administered a single intravenous dose of the purified derivative of endotoxin (3.0 ng/kg). Microarray analysis demonstrated changes in the expression of a number of genes, which were confirmed in separate in vitro endotoxin stimulation experiments. Subsequent TaqMan analysis of genes of interest indicated time-dependent changes in the expression of many of these genes. This included pre-B cell enhancing factor, which was identified on microarray analysis as being markedly upregulated following endotoxin stimulation. Protein expression of the genes examined by TaqMan analysis was measured and demonstrated the appearance of tumor necrosis factor (TNF)-alpha and sTNF-R proteins in the plasma beginning within 1 h after dosing, followed by other cytokines/ inflammatory markers (e.g., IL-1ra, G-CSF, IL-6, IL-8, and IL-10) and suppressors of cytokine signaling (SOCS-1 and SOCS-3). In general, cytokine protein expression correlated well with gene expression; however, the temporal profile of expression of some genes did not correlate well with the protein data. For many of these proteins, the lack of correlation was attributable to alternate tissue sources, which were demonstrated on TaqMan analysis. Principal component analysis indicated that cytokines could be grouped according to their temporal pattern of response, with most transcript levels returning to baseline 24 h following endotoxin administration. The combination of cDNA microarray and TaqMan analysis to identify and quantify changes in gene expression, along with the analysis of protein expression, can be useful in investigating inflammatory and other diseases.


Asunto(s)
Citocinas/metabolismo , Endotoxinas/administración & dosificación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas/análisis , Adolescente , Adulto , Endotoxinas/farmacología , Factor Estimulante de Colonias de Granulocitos/metabolismo , Humanos , Inflamación/patología , Inyecciones Intravenosas , Interleucina-1/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Cinética , Masculino , Análisis por Micromatrices , Nicotinamida Fosforribosiltransferasa , Reacción en Cadena de la Polimerasa , Proteínas/metabolismo , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba
3.
Methods Mol Med ; 104: 265-84, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15454673

RESUMEN

Many researchers have sought to study changes in gene expression in preclinical models of stroke. These range from in vitro models of ischemia, neuronal death, and regeneration to in vivo animal models aimed at replicating pathologies and regenerative processes typical of the clinical situation. In all such models, changes in gene expression occur, which may be assessed by measuring the abundance of the mRNA transcribed from particular genes of interest. The advent of real-time reverse-transcriptase polymerase chain reaction (RT-PCR) has vastly improved the sensitivity and accuracy of mRNA detection and is now the method of choice in many studies. Although this is a relatively simple and rapid technique, it has a number of pitfalls, especially in experimental design and data analysis. In this chapter we describe a detailed experimental protocol for real-time RT-PCR detection of mRNA transcripts, as used in the rat permanent middle cerebral artery occlusion model. We also discuss methods for analysis and interpretation of the resulting data.


Asunto(s)
Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Accidente Cerebrovascular/genética , Animales , ADN Complementario/genética , Interpretación Estadística de Datos , Modelos Animales de Enfermedad , Expresión Génica , Genes Reporteros , Infarto de la Arteria Cerebral Media/genética , ARN Mensajero/genética , Ratas , Estándares de Referencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/estadística & datos numéricos , Transcripción Genética
4.
J Biomol Screen ; 7(6): 554-69, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14599354

RESUMEN

The thrust of early drug discovery in recent years has been toward the configuration of homogeneous miniaturized assays. This has allowed organizations to contain costs in the face of exponential increases in the number of screening assays that need to be run to remain competitive. Miniaturization brings with it an increasing dependence on instrumentation, which over the past several years has seen the development of nanodispensing capability and sophisticated detection strategies. To maintain confidence in the data generated from miniaturized assays, it is critical to ensure that both compounds and reagents have been delivered as expected to the target wells. The authors have developed a standard operating procedure for liquid-handling quality control that has enabled them to evaluate performance on 2 levels. The first level provides for routine daily testing on existing instrumentation, and the second allows for more rigorous testing of new dispensing technologies. The procedure has shown itself to be useful in identifying both method programming and instrumentation performance shortcomings and has provided a means to harmonizing instrumentation usage by assay development and screening groups. The goal is that this type of procedure be used for facilitating the exchange of liquid handler performance data across the industry.


Asunto(s)
Microquímica/instrumentación , Microquímica/normas , Técnicas Químicas Combinatorias/instrumentación , Técnicas Químicas Combinatorias/normas , Interpretación Estadística de Datos , Agujas , Control de Calidad , Acero Inoxidable
5.
Brain Res Mol Brain Res ; 106(1-2): 101-16, 2002 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-12393270

RESUMEN

Expression levels of mRNA are commonly measured as a ratio of test to reference gene. The assumption is that reference genes such as beta-actin or cyclophilin are unaffected by treatment and act as steady-state controls. TaqMan real-time RT-PCR was used to test these assumptions in a rat model of cerebral ischaemia (tMCAO). Following measurement of 24 genes, we show that reference genes in this animal model fail the criteria for steady-state controls. Neuronal loss, glial proliferation and an influx of leukocytes into the lesioned brain result in major disturbance to cell populations. The mRNA for reference genes, as for test genes, reflects these changes. Specific mRNA levels vary according to the choice of reference gene to which they are normalised. In the process of resolving reference gene issues, mRNA increases were discovered for leukaemia inhibitory factor, nestin and galanin in rat brain hemispheres affected by ischaemia. Results are reported for a further 21 genes and mathematical and statistical methods are described that allow in this study fraction-fold changes in mRNA to be detected.


Asunto(s)
Isquemia Encefálica/genética , Regulación de la Expresión Génica , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Animales , Interpretación Estadística de Datos , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media , Masculino , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Estándares de Referencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA