Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Adv Funct Mater ; 30(36)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-35531589

RESUMEN

Magnetic nanoparticles have garnered sustained research interest for their promise in biomedical applications including diagnostic imaging, triggered drug release, cancer hyperthermia, and neural stimulation. Many of these applications make use of heat dissipation by ferrite nanoparticles under alternating magnetic fields, with these fields acting as an externally administered stimulus that is either present or absent, toggling heat dissipation on and off. Here, we motivate and demonstrate an extension of this concept, magnetothermal multiplexing, in which exposure to alternating magnetic fields of differing amplitude and frequency can result in selective and independent heating of magnetic nanoparticle ensembles. The differing magnetic coercivity of these particles, empirically characterized by a custom high amplitude alternating current magnetometer, informs the systematic selection of a multiplexed material system. This work culminates in a demonstration of magnetothermal multiplexing for selective remote control of cellular signaling in vitro.

2.
Nat Commun ; 15(1): 1485, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374025

RESUMEN

Recent discovery of emergent magnetism in van der Waals magnetic materials (vdWMM) has broadened the material space for developing spintronic devices for energy-efficient computation. While there has been appreciable progress in vdWMM discovery, a solution for non-volatile, deterministic switching of vdWMMs at room temperature has been missing, limiting the prospects of their adoption into commercial spintronic devices. Here, we report the first demonstration of current-controlled non-volatile, deterministic magnetization switching in a vdW magnetic material at room temperature. We have achieved spin-orbit torque (SOT) switching of the PMA vdW ferromagnet Fe3GaTe2 using a Pt spin-Hall layer up to 320 K, with a threshold switching current density as low as [Formula: see text]1.69 [Formula: see text] 106 A cm-2 at room temperature. We have also quantitatively estimated the anti-damping-like SOT efficiency of our Fe3GaTe2/Pt bilayer system to be [Formula: see text], using the second harmonic Hall voltage measurement technique. These results mark a crucial step in making vdW magnetic materials a viable choice for the development of scalable, energy-efficient spintronic devices.

3.
Nat Commun ; 13(1): 5210, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36138011

RESUMEN

An intracellular antenna can open up new horizons for fundamental and applied biology. Here, we introduce the Cell Rover, a magnetostrictive antenna which can operate wirelessly inside a living cell and is compatible with 3D biological systems. It is sub-mm in size, acoustically actuated by an AC magnetic field and resonantly operated at low MHz frequencies, which is ideal for living systems. We developed an injection scheme involving non-uniform magnetic fields for intracellular injection of the Cell Rovers and demonstrated their operation in fully opaque, stage VI Xenopus oocytes, for which real-time imaging with conventional technologies is challenging. We also show that they provide a pathway for multiplexing applications to individually address multiple cells or to tune to more than one antenna within the same cell for versatile functionalities. This technology forms the foundation stone that can enable the integration of future capabilities such as smart sensing, modulation as well as energy harvesting to power in-cell nanoelectronic computing and can potentially bring the prowess of information technology inside a living cell. This could lead to unprecedented opportunities for fundamental understanding of biology as well as diagnostics and therapeutics.


Asunto(s)
Miniaturización , Tecnología Inalámbrica , Animales , Campos Magnéticos , Miniaturización/instrumentación , Oocitos , Xenopus
4.
Rev Sci Instrum ; 88(8): 084301, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28863666

RESUMEN

Alternating magnetic fields (AMFs) cause magnetic nanoparticles (MNPs) to dissipate heat while leaving surrounding tissue unharmed, a mechanism that serves as the basis for a variety of emerging biomedical technologies. Unfortunately, the challenges and costs of developing experimental setups commonly used to produce AMFs with suitable field amplitudes and frequencies present a barrier to researchers. This paper first presents a simple, cost-effective, and robust alternative for small AMF working volumes that uses soft ferromagnetic cores to focus the flux into a gap. As the experimental length scale increases to accommodate animal models (working volumes of 100s of cm3 or greater), poor thermal conductivity and volumetrically scaled core losses render that strategy ineffective. Comparatively feasible strategies for these larger volumes instead use low loss resonant tank circuits to generate circulating currents of 1 kA or greater in order to produce the comparable field amplitudes. These principles can be extended to the problem of identifying practical routes for scaling AMF setups to humans, an infrequently acknowledged challenge that influences the extent to which many applications of MNPs may ever become clinically relevant.


Asunto(s)
Investigación Biomédica , Campos Magnéticos , Nanopartículas , Conductividad Térmica , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA