Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Pharmacol Res ; 190: 106711, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36854367

RESUMEN

Neuronal nicotinic acetylcholine receptors (nAChRs) are widely distributed in both the peripheral and the central nervous systems. nAChRs exert a crucial modulatory influence on several brain biological processes; they are involved in a variety of neuronal diseases including Parkinson's disease, Alzheimer's disease, epilepsy, and nicotine addiction. The influence of nAChRs on brain function depends on the activity of other neurotransmitter receptors that co-exist with nAChRs on neurons. In fact, the crosstalk between receptors is an important mechanism of neurotransmission modulation and plasticity. This may be due to converging intracellular pathways but also occurs at the membrane level, because of direct physical interactions between receptors. In this line, this review is dedicated to summarizing how nAChRs and other ionotropic and metabotropic receptors interact and the relevance of nAChRs cross-talks in modulating various neuronal processes ranging from the classical modulation of neurotransmitter release to neuron plasticity and neuroprotection.


Asunto(s)
Receptores Nicotínicos , Receptores Nicotínicos/metabolismo , Sistema Nervioso Central/metabolismo , Neuronas/metabolismo , Transmisión Sináptica/fisiología , Encéfalo/metabolismo
2.
Glia ; 69(3): 681-696, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33045109

RESUMEN

The progressive neuropathological damage seen in Parkinson's disease (PD) is thought to be related to the spreading of aggregated forms of α-synuclein. Clearance of extracellular α-synuclein released by degenerating neurons may be therefore a key mechanism to control the concentration of α-synuclein in the extracellular space. Several molecular chaperones control misfolded protein accumulation in the extracellular compartment. Among these, clusterin, a glycoprotein associated with Alzheimer's disease, binds α-synuclein aggregated species and is present in Lewy bodies, intraneuronal aggregates mainly composed by fibrillary α-synuclein. In this study, using murine primary astrocytes with clusterin genetic deletion, human-induced pluripotent stem cell (iPSC)-derived astrocytes with clusterin silencing and two animal models relevant for PD we explore how clusterin affects the clearance of α-synuclein aggregates by astrocytes. Our findings showed that astrocytes take up α-synuclein preformed fibrils (pffs) through dynamin-dependent endocytosis and that clusterin levels are modulated in the culture media of cells upon α-synuclein pffs exposure. Specifically, we found that clusterin interacts with α-synuclein pffs in the extracellular compartment and the clusterin/α-synuclein complex can be internalized by astrocytes. Mechanistically, using clusterin knock-out primary astrocytes and clusterin knock-down hiPSC-derived astrocytes we observed that clusterin limits the uptake of α-synuclein pffs by cells. Interestingly, we detected increased levels of clusterin in the adeno-associated virus- and the α-synuclein pffs- injected mouse model, suggesting a crucial role of this chaperone in the pathogenesis of PD. Overall, our observations indicate that clusterin can limit the uptake of extracellular α-synuclein aggregates by astrocytes and, hence, contribute to the spreading of Parkinson pathology.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Astrocitos , Clusterina/genética , Humanos , Cuerpos de Lewy , Ratones , alfa-Sinucleína/genética
3.
Neurobiol Dis ; 138: 104789, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32032728

RESUMEN

Loss of dopaminergic nigrostriatal neurons and fibrillary α-synuclein (α-syn) aggregation in Lewy bodies (LB) characterize Parkinson's disease (PD). We recently found that Synapsin III (Syn III), a phosphoprotein regulating dopamine (DA) release with α-syn, is another key component of LB fibrils in the brain of PD patients and acts as a crucial mediator of α-syn aggregation and toxicity. Methylphenidate (MPH), a monoamine reuptake inhibitor (MRI) efficiently counteracting freezing of gait in advanced PD patients, can bind α-syn and controls α-syn-mediated DA overflow and presynaptic compartmentalization. Interestingly, MPH results also efficient for the treatment of attention deficits and hyperactivity disorder (ADHD), a neurodevelopmental psychiatric syndrome associated with Syn III and α-syn polymorphisms and constituting a risk factor for the development of LB disorders. Here, we studied α-syn/Syn III co-deposition and longitudinal changes of α-syn, Syn III and DA transporter (DAT) striatal levels in nigrostriatal neurons of a PD model, the human C-terminally truncated (1-120) α-syn transgenic (SYN120 tg) mouse, in comparison with C57BL/6J wild type (wt) and C57BL/6JOlaHsd α-syn null littermates. Then, we analyzed the locomotor response of these animals to an acute administration of MPH (d-threo) and other MRIs: cocaine, that we previously found to stimulate Syn III-reliant DA release in the absence of α-syn, or the selective DAT blocker GBR-12935, along aging. Finally, we assessed whether these drugs modulate α-syn/Syn III interaction by fluorescence resonance energy transfer (FRET) and performed in silico studies engendering a heuristic model of the α-syn conformations stabilized upon MPH binding. We found that only MPH was able to over-stimulate a Syn III-dependent/DAT-independent locomotor activity in the aged SYN120 tg mice showing α-syn/Syn III co-aggregates. MPH enhanced full length (fl) α-syn/Syn III and even more (1-120) α-syn/Syn III interaction in cells exhibiting α-syn/Syn III inclusions. Moreover, in silico studies confirmed that MPH may reduce α-syn fibrillation by stabilizing a protein conformation with increased lipid binding predisposition. Our observations indicate that the motor-stimulating effect of MPH can be positively fostered in the presence of α-syn/Syn III co-aggregation. This evidence holds significant implications for PD and ADHD therapeutic management.


Asunto(s)
Metilfenidato/metabolismo , Sinapsinas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Cocaína/farmacología , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neuronas Dopaminérgicas/metabolismo , Trastornos Neurológicos de la Marcha/metabolismo , Cuerpos de Lewy/metabolismo , Metilfenidato/farmacología , Ratones , Ratones Endogámicos C57BL , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Sinucleinopatías
4.
Neurobiol Dis ; 129: 1-12, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31051233

RESUMEN

We recently found that in mouse dopaminergic neurons, the heteromer formed by the dopamine D3 receptor (D3R) and the ß2 subunit of acetylcholine nicotinic receptor (nAChR) exerts neurotrophic effects when activated by nicotine, leading to neurons with enlarged cell bodies and increased dendrite arborization. Beside this action, we now show that nicotine, by activating the D3R-nAChR heteromer, protects dopaminergic neurons against neuronal injury. In primary cultures of mouse dopaminergic neurons, in fact, the ability of nicotine to inhibit both the pathological accumulation of alpha-synuclein induced by glucose deprivation and the consequent morphological defects were strongly prevented by disrupting the D3R-nAChR heteromer with specific interfering TAT-peptides; the relevance of the phosphoinositide 3-kinase (PI3K) intracellular signaling in mediating nicotine prevention of alpha-synuclein aggregation has been also demonstrated. Moreover, the ability of nicotine in restoring the ubiquitin-proteasome system has been found as a mechanism contributing to the neuroprotective properties of nicotine. By using the proximity ligation assay, we have shown that the D3R-nAChR heteromer is also expressed in human dopaminergic neurons derived from induced pluripotent stem cells. In this human cell model, nicotine exerts neuroprotective effects specifically acting through the D3R-nAChR complex thus indicating that this heteromer is a relevant molecular effector involved in the protection of human dopaminergic neurons.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Nicotina/farmacología , Receptores de Dopamina D3/metabolismo , Receptores Nicotínicos/metabolismo , alfa-Sinucleína/efectos de los fármacos , Animales , Células Cultivadas , Neuronas Dopaminérgicas/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fármacos Neuroprotectores/farmacología , Receptores de Dopamina D3/efectos de los fármacos , Receptores Nicotínicos/efectos de los fármacos
5.
Neural Plast ; 2018: 4196961, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29531524

RESUMEN

The antiparkinsonian ropinirole and pramipexole are D3 receptor- (D3R-) preferring dopaminergic (DA) agonists used as adjunctive therapeutics for the treatment resistant depression (TRD). While the exact antidepressant mechanism of action remains uncertain, a role for D3R in the restoration of impaired neuroplasticity occurring in TRD has been proposed. Since D3R agonists are highly expressed on DA neurons in humans, we studied the effect of ropinirole and pramipexole on structural plasticity using a translational model of human-inducible pluripotent stem cells (hiPSCs). Two hiPSC clones from healthy donors were differentiated into midbrain DA neurons. Ropinirole and pramipexole produced dose-dependent increases of dendritic arborization and soma size after 3 days of culture, effects antagonized by the selective D3R antagonists SB277011-A and S33084 and by the mTOR pathway kinase inhibitors LY294002 and rapamycin. All treatments were also effective in attenuating the D3R-dependent increase of p70S6-kinase phosphorylation. Immunoneutralisation of BDNF, inhibition of TrkB receptors, and blockade of MEK-ERK signaling likewise prevented ropinirole-induced structural plasticity, suggesting a critical interaction between BDNF and D3R signaling pathways. The highly similar profiles of data acquired with DA neurons derived from two hiPSC clones underpin their reliability for characterization of pharmacological agents acting via dopaminergic mechanisms.


Asunto(s)
Antiparkinsonianos/administración & dosificación , Benzotiazoles/administración & dosificación , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neuronas Dopaminérgicas , Indoles/administración & dosificación , Plasticidad Neuronal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Animales , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Ratones , Pramipexol , Transducción de Señal
6.
Mov Disord ; 31(4): 512-20, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26898243

RESUMEN

BACKGROUND: Dyskinesia, the major side effect of l-dopa therapy in PD, is mainly associated with nonphysiological stimulation of denervated receptors in the striatum. In particular, DA D1 receptor-mediated aberrant extracellular signal-regulated protein kinases 1 and 2 activation have been associated with striatal changes leading to dyskinesia. We recently identified the tyrosine phosphatase Shp-2 as a crucial effector transmitting D1 receptor signaling to extracellular signal-regulated protein kinases 1 and 2 activation and reported the involvement of the D1 receptor/Shp-2/extracellular signal-regulated protein kinases 1 and 2 pathway in the development of l-dopa-induced dyskinesia. OBJECTIVES: In this study, the role of Shp-2 in l-dopa-induced dyskinesia development was investigated by in vivo silencing of Shp-2 in the striatum of the 6-hydroxy-dopamine rat model of PD. METHODS: Lentiviral particles delivering short hairpin RNA were used to obtain long-term striatal Shp-2 downregulation. Rats were then treated with l-dopa and analyzed for both the improvement of akinesia and the development of l-dopa-induced dyskinesia. RESULTS: The results show that Shp-2 knockdown remarkably decreased extracellular signal-regulated protein kinases 1 and 2 phosphorylation and attenuated the severity of l-dopa-induced dyskinesia likely without compromising the therapeutic efficacy of l-dopa. CONCLUSION: These data suggest that the striatal D1 receptor/Shp-2 complex may represent a promising novel target for the development of antidyskinetic drugs.


Asunto(s)
Antiparkinsonianos/efectos adversos , Conducta Animal/efectos de los fármacos , Discinesia Inducida por Medicamentos/metabolismo , Levodopa/efectos adversos , Neostriado/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Discinesia Inducida por Medicamentos/prevención & control , Masculino , Neostriado/efectos de los fármacos , Ratas , Ratas Wistar
7.
Eur J Pharmacol ; 976: 176678, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38821163

RESUMEN

Dopaminergic neurons express a heteromer composed of the dopamine D3 receptor and the α4ß2 nicotinic acetylcholine receptor, the D3R-nAChR heteromer, activated by both nicotine and dopamine D2 and D3 receptors agonists, such as quinpirole, and crucial for dopaminergic neuron homeostasis. We now report that D3R-nAChR heteromer activity is potentiated by 17-ß-estradiol which acts as a positive allosteric modulator by binding a specific domain on the α4 subunit of the nicotinic receptor protomer. In mouse dopaminergic neurons, in fact, 17-ß-estradiol significantly increased the ability of nicotine and quinpirole in promoting neuron dendritic remodeling and in protecting neurons against the accumulation of α-synuclein induced by deprivation of glucose, with a mechanism that does not involve the classical estrogen receptors. The potentiation induced by 17-ß-estradiol required the D3R-nAChR heteromer since either nicotinic receptor or dopamine D3 receptor antagonists and interfering TAT-peptides, but not the estrogen receptor antagonist fulvestrant, specifically prevented 17-ß-estradiol effects. Evidence of estrogens neuroprotection, mainly mediated by genomic mechanisms, have been provided, which is in line with epidemiological data reporting that females are less likely to develop Parkinson's Disease than males. Therefore, potentiation of D3R-nAChR heteromer activity may represent a further mechanism by which 17-ß-estradiol reduces dopaminergic neuron vulnerability.


Asunto(s)
Neuronas Dopaminérgicas , Estradiol , Fármacos Neuroprotectores , Receptores de Dopamina D3 , Receptores Nicotínicos , Receptores de Dopamina D3/metabolismo , Receptores de Dopamina D3/agonistas , Estradiol/farmacología , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Receptores Nicotínicos/metabolismo , Ratones , Fármacos Neuroprotectores/farmacología , Femenino , Masculino
8.
Stem Cell Res ; 74: 103293, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38160629

RESUMEN

We have established Noonan syndrome (NS)-derived induced pluripotent stem cell (iPSC) lines derived from peripheral blood mononuclear cells (PBMCs) of a family cohort carrying the heterozygous PTPN11 c.188 A > G (p.Y63C) mutation. The new iPSC lines were validated by confirming the normal karyotype and targeted mutation, the pluripotent gene expression, and the differentiation capacity into three germ layers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de Noonan , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Leucocitos Mononucleares , Mutación/genética , Heterocigoto , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética
9.
Neuroscience ; 544: 104-116, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38244669

RESUMEN

Our recent study revealed that fluorescent lamp light can penetrate deep into the brain of mice and rats leading to the development of typical histological characteristics associated with Parkinson's disease such as the loss of dopamine neurons in the substantia nigra. Monochromatic LED lights were thus used in this work to deepen our knowledge on the effects of the major wavelength peaks of fluorescent light on mouse and human dopaminergic cells. In particular, we exposed immortalized dopaminergic MN9D neuronal cells, primary cultures of mouse mesencephalic dopaminergic cells and human dopaminergic neurons differentiated from induced pluripotent stem cells (hiPSC) to different LED light wavelengths. We found that chronic exposure to LED light reduced overall undifferentiated MN9D cell number, with the most significant effects observed at wavelengths of 485 nm and 610 nm. Moreover, LED light especially at 610 nm was able to negatively impact on the survival of mouse mesencephalic dopaminergic cells and of human dopaminergic neurons derived from hiPSC. Notably, differentiated MN9D dopaminergic cells, which closely resemble mature dopamine neuronal phenotype, acutely exposed for 3 h at 610 nm, showed a clear increase in ROS production and cytotoxicity compared to controls undifferentiated MN9D cells. These increases were even more pronounced by the co-treatment with the oxidative agent H2O2. Collectively, these findings suggest that specific wavelengths, particularly those capable of penetrating deep into the brain, could potentially pose an environmental hazard in relation to Parkinson's disease.


Asunto(s)
Neuronas Dopaminérgicas , Enfermedad de Parkinson , Humanos , Animales , Ratas , Enfermedad de Parkinson/patología , Peróxido de Hidrógeno/farmacología , Mesencéfalo , Sustancia Negra
10.
Mol Pharmacol ; 83(6): 1176-89, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23543412

RESUMEN

Although long-term exposure to nicotine is highly addictive, one beneficial consequence of chronic tobacco use is a reduced risk for Parkinson's disease. Of interest, these effects both reflect structural and functional plasticity of brain circuits controlling reward and motor behavior and, specifically, recruitment of nicotinic acetylcholine receptors (nAChR) in mesencephalic dopaminergic neurons. Because the underlying cellular mechanisms are poorly understood, we addressed this issue with use of primary cultures of mouse mesencephalic dopaminergic neurons. Exposure to nicotine (1-10 µM) for 72 hours in vitro increased dendritic arborization and soma size in primary cultures. These effects were blocked by mecamylamine and dihydro-ß-erythroidine, but not methyllycaconitine. The involvement of α4ß2 nAChR was supported by the lack of nicotine-induced structural remodeling in neurons from α4 null mutant mice (KO). Challenge with nicotine triggered phosphorylation of the extracellular signal-regulated kinase (ERK) and the thymoma viral proto-oncogene (Akt), followed by activation of the mammalian target of rapamycin complex 1 (mTORC1)-dependent p70 ribosomal S6 protein kinase. Upstream pathway blockade using the phosphatidylinositol 3-kinase inhibitor LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one hydrochloride] resulted in suppression of nicotine-induced phosphorylations and structural plasticity. These effects were dependent on functional DA D3 receptor (D3R), because nicotine was inactive both in cultures from D3R KO mice and after pharmacologic blockade with D3R antagonist trans-N-4-2-(6-cyano-1,2,3, 4-tetrahydroisoquinolin-2-yl)ethylcyclohexyl-4-quinolinecarboxamide (SB-277011-A) (50 nM). Finally, exposure to nicotine in utero (5 mg/kg/day for 5 days) resulted in increased soma area of DAergic neurons of newborn mice, effects not observed in D3 receptor null mutant mice mice. These findings indicate that nicotine-induced structural plasticity at mesencephalic dopaminergic neurons involves α4ß2 nAChRs together with dopamine D3R-mediated recruitment of ERK/Akt-mTORC1 signaling.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Mesencéfalo/efectos de los fármacos , Nicotina/farmacología , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Dopamina D3/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Activación Enzimática , Femenino , Sistema de Señalización de MAP Quinasas , Exposición Materna , Intercambio Materno-Fetal , Diana Mecanicista del Complejo 1 de la Rapamicina , Mesencéfalo/citología , Mesencéfalo/metabolismo , Ratones , Ratones Noqueados , Complejos Multiproteicos , Embarazo , Receptores de Dopamina D3/genética , Receptores Nicotínicos/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR
11.
Curr Top Behav Neurosci ; 60: 47-72, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35505059

RESUMEN

G protein-coupled receptors (GPCR) heterodimers represent new entities with unique pharmacological, signalling, and trafficking properties, with specific distribution restricted to those cells where the two interacting receptors are co-expressed. Like other GPCR, dopamine D3 receptors (D3R) directly interact with various receptors to form heterodimers: data showing the D3R physical interaction with both GPCR and non-GPCR receptors have been provided including D3R interaction with other dopamine receptors. The aim of this chapter is to summarize current knowledge of the distinct roles of heterodimers involving D3R, focusing on the D3R interaction with the dopamine D1 receptor (D1R): the D1R-D3R heteromer, in fact, has been postulated in both ventral and motor striatum. Interestingly, since both D1R and D3R have been implicated in several pathological conditions, including schizophrenia, motor dysfunctions, and substance use disorders, the D1R-D3R heteromer may represent a potential drug target for the treatment of these diseases.


Asunto(s)
Dopamina , Receptores de Dopamina D3 , Receptores de Dopamina D3/metabolismo , Cuerpo Estriado
12.
Biomolecules ; 13(3)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36979407

RESUMEN

The heteromer composed of dopamine D1 and D3 receptors (D1R-D3R) has been defined as a structure able to trigger Erk1/2 and Akt signaling in a G protein-independent, beta-arrestin 1-dependent way that is physiologically expressed in the ventral striatum and is likely involved in the control of locomotor activity. Indeed, abnormal levels of D1R-D3R heteromer in the dorsal striatum have been correlated with the development of L-DOPA-induced dyskinesia (LID) in Parkinson's disease patients, a motor complication associated with striatal D1R signaling, thus requiring Gs protein and PKA activity to activate Erk1/2. Therefore, to clarify the role of the D1R/D3R heteromer in LID, we investigated the signaling pathway induced by the heteromer using transfected cells and primary mouse striatal neurons. Collectively, we found that in both the cell models, D1R/D3R heteromer-induced activation of Erk1/2 exclusively required the D1R molecular effectors, such as Gs protein and PKA, with the contribution of the phosphatase Shp-2 and beta-arrestins, indicating that heterodimerization with the D3R abolishes the specific D3R-mediated signaling but strongly allows D1R signals. Therefore, while in physiological conditions the D1R/D3R heteromer could represent a mechanism that strengthens the D1R activity, its pathological expression may contribute to the abnormal PKA-Shp-2-Erk1/2 pathway connected with LID.


Asunto(s)
Dopamina , Levodopa , Animales , Ratones , beta-Arrestina 1 , beta-Arrestinas , Proteínas de Unión al GTP , Levodopa/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteínas Tirosina Fosfatasas , Receptores de Dopamina D1 , Receptores de Dopamina D3
13.
J Neurochem ; 120(5): 765-78, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22145570

RESUMEN

Exposure to psychostimulants results in neuroadaptive changes of the mesencephalic dopaminergic system including morphological reorganization of dopaminergic neurons. Increased dendrite arborization and soma area were previously observed in primary cultures of mesencephalic dopaminergic neurons after 3-day exposure to dopamine agonists via activation of D(3) autoreceptors (D(3) R). In this work, we showed that cocaine significantly increased dendritic arborization and soma area of dopaminergic neurons from E12.5 mouse embryos by activating phosphorylation of extracellular signal-regulated kinase (ERK) and thymoma viral proto-oncogene (Akt). These effects were dependent on functional D(3) R expression because cocaine did not produce morphological changes or ERK/Akt phosphorylation neither in primary cultures of D(3) R mutant mice nor following pharmacologic blockade with D(3) R antagonists SB-277011-A and S-33084. Cocaine effects on morphology and ERK/Akt phosphorylation were inhibited by pre-incubation with the phosphatidylinositol 3-kinase inhibitor LY294002. These observations were corroborated in vivo by morphometrical assessment of mesencephalic dopaminergic neurons of P1 newborns exposed to cocaine from E12.5 to E16.5. Cocaine increased the soma area of wild-type but not of D(3) R mutant mice, supporting the translational value of primary culture. These findings indicate a direct involvement of D3R and ERK/Akt pathways as critical mediators of cocaine-induced structural plasticity, suggesting their involvement in psychostimulant addiction.


Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Mesencéfalo/citología , Neuronas/fisiología , Terminales Presinápticos/metabolismo , Receptores de Dopamina D3/metabolismo , Transducción de Señal/fisiología , Análisis de Varianza , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Células Cultivadas , Dopamina , Dopaminérgicos/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Técnicas In Vitro , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Proteína Oncogénica v-akt/metabolismo , Terminales Presinápticos/efectos de los fármacos , Receptores de Dopamina D3/deficiencia , Transducción de Señal/efectos de los fármacos , Tritio/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
14.
Mol Neurobiol ; 59(4): 2129-2149, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35044626

RESUMEN

We have previously shown that the heteromer composed by the dopamine D3 receptor (D3R) and the nicotinic acetylcholine receptor (nAChR) (D3R-nAChR heteromer) is expressed in dopaminergic neurons, activated by nicotine and represents the molecular unit that, in these neurons, contributes to the modulation of critical events such as structural plasticity and neuroprotection. We now extended this study by investigating the D3R-nAChR heteromer properties using various cell models such as transfected HEK293 cells, primary cultures of mouse dopaminergic neurons and human dopaminergic neurons derived from induced pluripotent stem cells.We found that the D3R-nAChR heteromer is the molecular effector that transduces the remodeling properties not only associated with nicotine but also with D3R agonist stimulation: neither nAChR nor D3R, in fact, when express as monomers, are able to elicit these effects. Moreover, strong and sustained activation of the PI3K-ERK1/2/Akt pathways is coupled with D3R-nAChR heteromer stimulation, leading to the expression of the immediate-early gene c-Fos and to sustained phosphorylation of cytosolic p70 ribosomal S6 kinase (p70S6K), critical for dendritic remodeling. By contrast, while D3R stimulation results in rapid and transient activation of both Erk1/2 and Akt, that is PI3K-dependent, stimulation of nAChR is associated with persistent activation of Erk1/2 and Akt, in a PI3K-independent way. Thus, the D3R-nAChR heteromer and its ability to trigger the PI3K-ERK1/2/Akt signaling pathways may represent a novel target for preserving dopaminergic neurons healthy and for conferring neuronal protection against injuries.


Asunto(s)
Receptores de Dopamina D3 , Receptores Nicotínicos , Animales , Neuronas Dopaminérgicas/metabolismo , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Nicotina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores de Dopamina D3/metabolismo , Receptores Nicotínicos/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal
15.
Cells ; 11(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36497160

RESUMEN

Attention deficit and hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by alterations in the mesocorticolimbic and nigrostriatal dopaminergic pathways. Polymorphisms in the Synapsin III (Syn III) gene can associate with ADHD onset and even affect the therapeutic response to the gold standard ADHD medication, methylphenidate (MPH), a monoamine transporter inhibitor whose efficacy appears related with the stimulation of brain-derived neurotrophic factor (BDNF). Interestingly, we previously showed that MPH can bind Syn III, which can regulate neuronal development. These observations suggest that Syn III polymorphism may impinge on ADHD onset and response to therapy by affecting BDNF-dependent dopaminergic neuron development. Here, by studying zebrafish embryos exposed to Syn III gene knock-down (KD), Syn III knock-out (ko) mice and human induced pluripotent stem cells (iPSCs)-derived neurons subjected to Syn III RNA interference, we found that Syn III governs the earliest stages of dopaminergic neurons development and that this function is conserved in vertebrates. We also observed that in mammals Syn III exerts this function acting upstream of brain-derived neurotrophic factor (BDNF)- and cAMP-dependent protein kinase 5 (Cdk5)-stimulated dendrite development. Collectively, these findings own significant implications for deciphering the biological basis of ADHD.


Asunto(s)
Neuronas Dopaminérgicas , Sinapsinas , Animales , Humanos , Ratones , Factor Neurotrófico Derivado del Encéfalo/genética , Dopamina , Neuronas Dopaminérgicas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Metilfenidato/uso terapéutico , Ratones Noqueados , Sinapsinas/genética , Sinapsinas/metabolismo , Pez Cebra/metabolismo
16.
Pharmaceutics ; 14(8)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36015221

RESUMEN

Parkinson's disease (PD) is characterized by dopaminergic nigrostriatal neurons degeneration and Lewy body pathology, mainly composed of α-synuclein (αSyn) fibrillary aggregates. We recently described that the neuronal phosphoprotein Synapsin III (Syn III) participates in αSyn pathology in PD brains and is a permissive factor for αSyn aggregation. Moreover, we reported that the gene silencing of Syn III in a human αSyn transgenic (tg) mouse model of PD at a pathological stage, manifesting marked insoluble αSyn deposits and dopaminergic striatal synaptic dysfunction, could reduce αSyn aggregates, restore synaptic functions and motor activities and exert neuroprotective effects. Interestingly, we also described that the monoamine reuptake inhibitor methylphenidate (MPH) can recover the motor activity of human αSyn tg mice through a dopamine (DA) transporter-independent mechanism, which relies on the re-establishment of the functional interaction between Syn III and α-helical αSyn. These findings support that the pathological αSyn/Syn III interaction may constitute a therapeutic target for PD. Here, we studied MPH and some of its analogues as modulators of the pathological αSyn/Syn III interaction. We identified 4-methyl derivative I-threo as a lead candidate modulating αSyn/Syn III interaction and having the ability to reduce αSyn aggregation in vitro and to restore the motility of αSyn tg mice in vivo more efficiently than MPH. Our results support that MPH derivatives may represent a novel class of αSyn clearing agents for PD therapy.

17.
Neurobiol Aging ; 99: 65-78, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33422895

RESUMEN

Mutations in the leucine-rich repeat kinase 2 (LRRK2) are the most common genetic determinants of Parkinson's disease (PD), with the G2019S accounting for about 3% of PD cases. LRRK2 regulates various cellular processes, including vesicle trafficking that is crucial for receptor localization at the plasma membrane. In this study, induced pluripotent stem cells derived from 2 PD patients bearing the G2019S LRRK2 kinase activating mutation were used to generate neuronal cultures enriched in dopaminergic neurons. The results show that mutant LRRK2 prevents the membrane localization of both the dopamine D3 receptors (D3R) and the nicotinic acetylcholine receptors (nAChR) and the formation of the D3R-nAChR heteromer, a molecular unit crucial for promoting neuronal homeostasis and preserving dopaminergic neuron health. Interestingly, D3R and nAChR as well as the corresponding heteromer membrane localization were rescued by inhibiting the abnormally increased kinase activity. Thus, the altered membrane localization of the D3R-nAChR heteromer associated with mutation in LRRK2 might represent a pre-degenerative feature of dopaminergic neurons contributing to the special vulnerability of this neuronal population.


Asunto(s)
Membrana Celular/metabolismo , Neuronas Dopaminérgicas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación , Enfermedad de Parkinson/genética , Receptores de Dopamina D3/metabolismo , Receptores Nicotínicos/metabolismo , Humanos
18.
Stem Cell Res ; 51: 102216, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33548809

RESUMEN

Peripheral blood mononuclear cells (PBMCs) derived from a healthy 40-year-old female were successfully transformed into induced pluripotent stem cells (iPSCs) by using the integration-free CytoTune-iPS Sendai Reprogramming method. The resulting iPSCs line exhibits a normal karyotype, expresses stemness markers and displays the differentiation capacity into the three germ layers. This human iPSCs line can be used as healthy control in disease modelling studies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Adulto , Diferenciación Celular , Reprogramación Celular , Femenino , Estratos Germinativos , Humanos , Leucocitos Mononucleares
19.
Neurobiol Stress ; 15: 100381, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34458512

RESUMEN

Converging clinical and preclinical evidence demonstrates that depressive phenotypes are associated with synaptic dysfunction and dendritic simplification in cortico-limbic glutamatergic areas. On the other hand, the rapid antidepressant effect of acute ketamine is consistently reported to occur together with the rescue of dendritic atrophy and reduction of spine number induced by chronic stress in the hippocampus and prefrontal cortex of animal models of depression. Nevertheless, the molecular mechanisms underlying these morphological alterations remain largely unknown. Here, we found that miR-9-5p levels were selectively reduced in the hippocampus of rats vulnerable to Chronic Mild Stress (CMS), while acute subanesthetic ketamine restored its levels to basal condition in just 24h; miR-9-5p expression inversely correlated with the anhedonic phenotype. A decrease of miR-9-5p was reproduced in an in vitro model of stress, based on primary hippocampal neurons incubated with the stress hormone corticosterone. In both CMS animals and primary neurons, decreased miR-9-5p levels were associated with dendritic simplification, while treatment with ketamine completely rescued the changes. In vitro modulation of miR-9-5p expression showed a direct role of miR-9-5p in regulating dendritic length and spine density in mature primary hippocampal neurons. Among the putative target genes tested, Rest and Sirt1 were validated as biological targets in primary neuronal cultures. Moreover, in line with miR-9-5p changes, REST protein expression levels were remarkably increased in both CMS vulnerable animals and corticosterone-treated neurons, while ketamine completely abolished this alteration. Finally, the shortening of dendritic length in corticosterone-treated neurons was shown to be partly rescued by miR-9-5p overexpression and dependent on REST protein expression. Overall, our data unveiled the functional role of miR-9-5p in the remodeling of dendritic arbor induced by stress/corticosterone in vulnerable animals and its rescue by acute antidepressant treatment with ketamine.

20.
Front Endocrinol (Lausanne) ; 12: 669426, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33981288

RESUMEN

Progesterone (Pg) and estrogen (E) receptors (PgRs and ERs) are expressed in normal and neoplastic adrenal cortex, but their role is not fully understood. In literature, Pg demonstrated cytotoxic activity on AdrenoCortical Carcinoma (ACC) cells, while tamoxifen is cytotoxic in NCI-H295R cells. Here, we demonstrated that in ACC cell models, ERs were expressed in NCI-H295R cells with a prevalence of ER-ß over the ER-α.Metastasis-derived MUC-1 and ACC115m cells displayed a very weak ER-α/ß signal, while PgR cells were expressed, although at low level. Accordingly, these latter were resistant to the SERM tamoxifen and scarcely sensitive to Pg, as we observed a lower potency compared to NCI-H295R cells in cytotoxicity (IC50: MUC-1 cells: 67.58 µM (95%CI: 63.22-73.04), ACC115m cells: 51.76 µM (95%CI: 46.45-57.67) and cell proliferation rate. Exposure of NCI-H295R cells to tamoxifen induced cytotoxicity (IC50: 5.43 µM (95%CI: 5.18-5.69 µM) mainly involving ER-ß, as their nuclear localization increased after tamoxifen: Δ A.U. treated vs untreated: 12 h: +27.04% (p < 0.01); 24 h: +36.46% (p < 0.0001). This effect involved the SF-1 protein reduction: Pg: -36.34 ± 9.26%; tamoxifen: -46.25 ± 15.68% (p < 0.01). Finally, in a cohort of 36 ACC samples, immunohistochemistry showed undetectable/low level of ERs, while PgR demonstrated a higher expression. In conclusion, ACC experimental cell models expressed PgR and low levels of ER in line with data obtained in patient tissues, thus limiting the possibility of a clinical approach targeting ER. Interestingly, Pg exerted cytotoxicity also in metastatic ACC cells, although with low potency.


Asunto(s)
Neoplasias de la Corteza Suprarrenal/patología , Carcinoma Corticosuprarrenal/patología , Progesterona/farmacología , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Tamoxifeno/farmacología , Neoplasias de la Corteza Suprarrenal/tratamiento farmacológico , Neoplasias de la Corteza Suprarrenal/metabolismo , Carcinoma Corticosuprarrenal/tratamiento farmacológico , Carcinoma Corticosuprarrenal/metabolismo , Antineoplásicos Hormonales/farmacología , Apoptosis , Proliferación Celular , Quimioterapia Combinada , Femenino , Humanos , Masculino , Progestinas/farmacología , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA