Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 146: 173-84, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26765097

RESUMEN

The exposome provides a framework for understanding elucidation of an uncharacterized molecular mechanism conferring enhanced susceptibility of macrophage membranes to bacterial infection after exposure to the environmental contaminant benzo(a)pyrene, [B(a)P]. The fundamental requirement in activation of macrophage effector functions is the binding of immunoglobulins to Fc receptors. FcγRIIa (CD32a), a member of the Fc family of immunoreceptors with low affinity for immunoglobulin G, has been reported to bind preferentially to IgG within lipid rafts. Previous research suggested that exposure to B(a)P suppressed macrophage effector functions but the molecular mechanisms remain elusive. The goal of this study was to elucidate the mechanism(s) of B(a)P-exposure induced suppression of macrophage function by examining the resultant effects of exposure-induced insult on CD32-lipid raft interactions in the regulation of IgG binding to CD32. The results demonstrate that exposure of macrophages to B(a)P alters lipid raft integrity by decreasing membrane cholesterol 25% while increasing CD32 into non-lipid raft fractions. This robust diminution in membrane cholesterol and 30% exclusion of CD32 from lipid rafts causes a significant reduction in CD32-mediated IgG binding to suppress essential macrophage effector functions. Such exposures across the lifespan would have the potential to induce immunosuppressive endophenotypes in vulnerable populations.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Benzo(a)pireno/toxicidad , Macrófagos/efectos de los fármacos , Microdominios de Membrana/efectos de los fármacos , Nistatina/farmacología , beta-Ciclodextrinas/farmacología , Células Cultivadas , Humanos , Inmunoglobulina G/metabolismo , Macrófagos/inmunología , Receptores de IgG/genética , Receptores de IgG/metabolismo , Transducción de Señal
2.
Cancer Biol Ther ; 21(10): 873-883, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32914706

RESUMEN

Hedgehog (HH) signaling, a critical developmental pathway, has been implicated in cancer initiation and progression. With vismodegib and sonidegib having been approved for clinical use, increasing numbers of HH inhibitors alone and in combination with chemotherapies are in clinical trials. Here we highlight the clinical research on HH antagonists and the genetics of response to these compounds in human cancers. Selectivity of HH inhibitors, determined by decreased pathway transcriptional activity, has been demonstrated in many clinical trials. Patients with advanced/metastatic basal cell carcinoma have benefited the most, whereas HH antagonists did little to improve survival rates in other cancers. Correlation between clinical response and HH gene expression vary among different cancer types. Predicting response and resistance to HH inhibitors presents a challenge and continues to remain an important area of research. New approaches combine standard of care chemotherapies and molecularly targeted therapies to increase the clinical utility of HH inhibitors.


Asunto(s)
Expresión Génica/genética , Proteínas Hedgehog/antagonistas & inhibidores , Neoplasias/genética , Humanos , Resultado del Tratamiento
3.
Int J Biochem Mol Biol ; 6(1): 1-16, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26045972

RESUMEN

Interleukin-34 (IL-34) is a cytokine consisting of a 39kD homodimer, shown to be a ligand for both the Macrophage Colony Stimulating Factor (M-CSF/CSF-1) receptor and the Receptor-like protein tyrosine phosphatase-zeta (RPTP-ƺ). IL-34 has been shown to promote monocyte viability and proliferation as well as the differentiation of bone marrow cells into macrophage progenitors. Published work on IL-34 involves its effects on normal hematopoietic and osteoclast progenitors. However, it is not known whether IL-34 has biologic effects in cancer, including leukemia. Here we report that the biological effects of IL-34 include induction of differential expression of Interleukins-1α and -1ß as well as induction of differentiation of U937, HL-60 and THP-1 leukemia cell lines demonstrating monocyte-like characteristics. The ability of IL-34 to induce monocytic-like differentiation is supported by strong morphological and functional evidence. Cell surface markers of myeloid lineage, CD64 and CD86, remain constant while the levels of CD11b and CD71 decline with IL-34 treatment. IL-34 also induced increases in CD14 and CD68 expression, further supporting maturation toward monocytic character. IL-34-induced differentiated U937 and THP-1 cell lines exhibited biological functions such as endocytosis and respiratory burst activities. Collectively, we conclude that while IL-34 does not induce cell growth or proliferation, it is able to induce differentiation of leukemia cell lines from monoblastic precursor cells towards monocyte- and macrophage-like cells, mediated through the JAK/STAT and PI3K/Akt pathways. To our knowledge, this is the first report that IL-34 induces differentiation in human leukemic cells, let alone any cancer model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA