RESUMEN
Idiopathic intracranial hypertension (IIH) is a condition of significant morbidity and rising prevalence. It typically affects young people living with obesity, mostly women of reproductive age, and can present with headaches, visual abnormalities, tinnitus and cognitive dysfunction. Raised intracranial pressure without a secondary identified cause remains a key diagnostic feature of this condition, however, the underlying pathophysiological mechanisms that drive this increase are poorly understood. Previous theories have focused on cerebrospinal fluid (CSF) hypersecretion or impaired reabsorption, however, the recent characterisation of the glymphatic system in many other neurological conditions necessitates a re-evaluation of these hypotheses. Further, the impact of metabolic dysfunction and hormonal dysregulation in this population group must also be considered. Given the emerging evidence, it is likely that IIH is triggered by the interaction of multiple aetiological factors that ultimately results in the disruption of CSF dynamics. This review aims to provide a comprehensive update on the current theories regarding the pathogenesis of IIH.
Asunto(s)
Hipertensión Intracraneal , Seudotumor Cerebral , Humanos , Femenino , Adolescente , Masculino , Seudotumor Cerebral/complicaciones , Cefalea/etiología , Obesidad/complicacionesRESUMEN
Multiple sclerosis (MS) is a progressive disease that often affects the cerebellum. It is characterised by demyelination, inflammation, and neurodegeneration within the central nervous system. Damage to the cerebellum in MS is associated with increased disability and decreased quality of life. Symptoms include gait and balance problems, motor speech disorder, upper limb dysfunction, and oculomotor difficulties. Monitoring symptoms is crucial for effective management of MS. A combination of clinical, neuroimaging, and task-based measures is generally used to diagnose and monitor MS. This paper reviews the present and new tools used by clinicians and researchers to assess cerebellar impairment in people with MS (pwMS). It also describes recent advances in digital and home-based monitoring for people with MS.
Asunto(s)
Enfermedades Cerebelosas , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico por imagen , Calidad de Vida , Cerebelo/diagnóstico por imagen , MarchaRESUMEN
INTRODUCTION Smart devices are widely available and capable of quickly recording and uploading speech segments for health-related analysis. The switch from laboratory recordings with professional-grade microphone set ups to remote, smart device-based recordings offers immense potential for the scalability of voice assessment. Yet, a growing body of literature points to a wide heterogeneity among acoustic metrics for their robustness to variation in recording devices. The addition of consumer-grade plug-and-play microphones has been proposed as a possible solution. Our aim was to assess if the addition of consumer-grade plug-and-play microphones increase the acoustic measurement agreement between ultra-portable devices and a reference microphone. METHODS Speech was simultaneously recorded by a reference high-quality microphone commonly used in research, and by two configurations with plug-and-play microphones. Twelve speech-acoustic features were calculated using recordings from each microphone to determine the agreement intervals in measurements between microphones. Agreement intervals were then compared to expected deviations in speech in various neurological conditions. Each microphone's response to speech and to silence were characterized through acoustic analysis to explore possible reasons for differences in acoustic measurements between microphones. The statistical differentiation of two groups, neurotypical and people with Multiple Sclerosis, using metrics from each tested microphone was compared to that of the reference microphone. RESULTS The two consumer-grade plug-and-play microphones favoured high frequencies (mean centre of gravity difference ≥ +175.3Hz) and recorded more noise (mean difference in signal-to-noise ≤ -4.2dB) when compared to the reference microphone. Between consumer-grade microphones, differences in relative noise were closely related to distance between the microphone and the speaker's mouth. Agreement intervals between the reference and consumer-grade microphones remained under disease-expected deviations only for fundamental frequency (f0, agreement interval ≤0.06Hz), f0 instability (f0 CoV, agreement interval ≤0.05%) and for tracking of second formant movement (agreement interval ≤1.4Hz/millisecond). Agreement between microphones was poor for other metrics, particularly for fine timing metrics (mean pause length and pause length variability for various tasks). The statistical difference between the two groups of speakers was smaller with the plug-and-play than with the reference microphone. CONCLUSION Measurement of f0 and F2 slope were robust to variation in recording equipment while other acoustic metrics were not. Thus, the tested plug-and-play microphones should not be used interchangeably with professional-grade microphones for speech analysis. Plug-and-play microphones may assist in equipment standardization within speech studies, including remote or self-recording, possibly with small loss in accuracy and statistical power as observed in this study.
RESUMEN
Diffusion MRI has provided the neuroimaging community with a powerful tool to acquire in-vivo data sensitive to microstructural features of white matter, up to 3 orders of magnitude smaller than typical voxel sizes. The key to extracting such valuable information lies in complex modelling techniques, which form the link between the rich diffusion MRI data and various metrics related to the microstructural organization. Over time, increasingly advanced techniques have been developed, up to the point where some diffusion MRI models can now provide access to properties specific to individual fibre populations in each voxel in the presence of multiple "crossing" fibre pathways. While highly valuable, such fibre-specific information poses unique challenges for typical image processing pipelines and statistical analysis. In this work, we review the "Fixel-Based Analysis" (FBA) framework, which implements bespoke solutions to this end. It has recently seen a stark increase in adoption for studies of both typical (healthy) populations as well as a wide range of clinical populations. We describe the main concepts related to Fixel-Based Analyses, as well as the methods and specific steps involved in a state-of-the-art FBA pipeline, with a focus on providing researchers with practical advice on how to interpret results. We also include an overview of the scope of all current FBA studies, categorized across a broad range of neuro-scientific domains, listing key design choices and summarizing their main results and conclusions. Finally, we critically discuss several aspects and challenges involved with the FBA framework, and outline some directions and future opportunities.
Asunto(s)
Encéfalo/citología , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Sustancia Blanca/diagnóstico por imagen , Encéfalo/fisiología , Imagen de Difusión por Resonancia Magnética/tendencias , Humanos , Procesamiento de Imagen Asistido por Computador/tendencias , Fibras Nerviosas/fisiología , Sustancia Blanca/fisiologíaRESUMEN
Upper and lower limb impairments are common in people with multiple sclerosis (pwMS), yet difficult to clinically identify in early stages of disease progression. Tasks involving complex motor control can potentially reveal more subtle deficits in early stages, and can be performed during functional MRI (fMRI) acquisition, to investigate underlying neural mechanisms, providing markers for early motor progression. We investigated brain activation during visually guided force matching of hand or foot in 28 minimally disabled pwMS (Expanded Disability Status Scale (EDSS) < 4 and pyramidal and cerebellar Kurtzke Functional Systems Scores ≤ 2) and 17 healthy controls (HC) using ultra-high field 7-Tesla fMRI, allowing us to visualise sensorimotor network activity in high detail. Task activations and performance (tracking lag and error) were compared between groups, and correlations were performed. PwMS showed delayed (+124 s, p = .002) and more erroneous (+0.15 N, p = .001) lower limb tracking, together with lower cerebellar, occipital and superior parietal cortical activation compared to HC. Lower activity within these regions correlated with worse EDSS (p = .034), lower force error (p = .006) and higher lesion load (p < .05). Despite no differences in upper limb task performance, pwMS displayed lower inferior occipital cortical activation. These results demonstrate that ultra-high field fMRI during complex hand and foot tracking can identify subtle impairments in lower limb movements and upper and lower limb brain activity, and differentiates upper and lower limb impairments in minimally disabled pwMS.
Asunto(s)
Corteza Cerebral/fisiopatología , Pie/fisiopatología , Mano/fisiopatología , Actividad Motora/fisiología , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/fisiopatología , Desempeño Psicomotor/fisiología , Adulto , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana EdadRESUMEN
Speech production relies on motor control and cognitive processing and is linked to cerebellar function. In diseases where the cerebellum is impaired, such as multiple sclerosis (MS), speech abnormalities are common and can be detected by instrumental assessments. However, the potential of speech assessments to be used to monitor cerebellar impairment in MS remains unexplored. The aim of this study is to build an objectively measured speech score that reflects cerebellar function, pathology and quality of life in MS. Eighty-five people with MS and 21 controls participated in the study. Speech was independently assessed through objective acoustic analysis and blind expert listener ratings. Cerebellar function and overall disease disability were measured through validated clinical scores; cerebellar pathology was assessed via magnetic resonance imaging, and validated questionnaires informed quality of life. Selected speech variables were entered in a regression model to predict cerebellar function. The resulting model was condensed into one composite speech score and tested for prediction of abnormal 9-hole peg test (9HPT), and for correlations with the remaining cerebellar scores, imaging measurements and self-assessed quality of life. Slow rate of syllable repetition and increased free speech pause percentage were the strongest predictors of cerebellar impairment, complemented by phonatory instability. Those variables formed the acoustic composite score that accounted for 54% of variation in cerebellar function, correlated with cerebellar white matter volume (r = 0.3, p = 0.017), quality of life (r = 0.5, p < 0.001) and predicted an abnormal 9HPT with 85% accuracy. An objective multi-feature speech metric was highly representative of motor cerebellar impairment in MS.
Asunto(s)
Enfermedades Cerebelosas/fisiopatología , Cerebelo/fisiopatología , Esclerosis Múltiple/fisiopatología , Habla/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Calidad de Vida , Sustancia Blanca/patologíaRESUMEN
BACKGROUND: Tremor is present in almost half of multiple sclerosis (MS) patients. The lack of understanding of its pathophysiology is hampering progress in development of treatments. OBJECTIVES: To clarify the structural and functional brain changes associated with the clinical phenotype of upper limb tremor in people with MS. METHODS: Fifteen healthy controls (46.1 ± 15.4 years), 27 MS participants without tremor (46.7 ± 11.6 years) and 42 with tremor (46.6 ± 11.5 years) were included. Tremor was quantified using the Bain score (0-10) for overall severity, handwriting and Archimedes spiral drawing. Functional magnetic resonance imaging activations were compared between participants groups during performance of a joystick task designed to isolate tremulous movement. Inflammation and atrophy of cerebello-thalamo-cortical brain structures were quantified. RESULTS: Tremor participants were found to have atrophy of the cerebellum and thalamus, and higher ipsilateral cerebellar lesion load compared to participants without tremor (p < 0.020). We found higher ipsilateral activation in the inferior parietal lobule, the premotor cortex and supplementary motor area in MS tremor participants compared to MS participants without tremor during the joystick task. Finally, stronger activation in those areas was associated with lower tremor severity. CONCLUSION: Subcortical neurodegeneration and inflammation along the cerebello-thalamo-cortical and cortical functional neuroplasticity contribute to the severity of tremor in MS.
Asunto(s)
Cerebelo/patología , Corteza Cerebral/fisiopatología , Esclerosis Múltiple/patología , Esclerosis Múltiple/fisiopatología , Plasticidad Neuronal/fisiología , Tálamo/patología , Temblor/fisiopatología , Extremidad Superior/fisiopatología , Adulto , Cerebelo/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Femenino , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Desempeño Psicomotor/fisiología , Tálamo/diagnóstico por imagen , Temblor/diagnóstico por imagenRESUMEN
Tremor in people with multiple sclerosis (MS) is a frequent and debilitating symptom with a relatively poorly understood pathophysiology. To determine the relationship between clinical tremor severity and structural magnetic resonance imaging parameters. Eleven patients with clinically definite MS and right-sided upper limb tremor were studied. Tremor severity was assessed using the Bain score (overall severity, writing, and Archimedes spiral drawing). Cerebellar dysfunction was assessed using the Scale for the Assessment and Rating of Ataxia. Dystonia was assessed using the Global Dystonia Scale adapted for upper limb. For all subjects, volume was calculated for the thalamus from T1-weighted volumetric scans using Freesurfer. Superior cerebellar peduncle (SCP) cross-sectional areas were measured manually. The presence of lesions was visually determined and the lesion volumes were calculated by the lesion growth algorithm as implemented in the Lesion Segmentation Toolbox. Right thalamic volume negatively correlated with Bain tremor severity score (ρ = - 0.65, p = 0.03). Left thalamic volume negatively correlated with general Bain tremor severity score (ρ = - 0.65, p = 0.03) and the Bain writing score (ρ = - 0.65, p = 0.03). Right SCP area negatively correlated with Bain writing score (ρ = - 0.69, p = 0.02). Finally, Bain Archimedes score was significantly higher in patients with lesions in the contralateral thalamus. Whole brain lesion load showed no relationship with tremor severity. These results implicate degeneration of key structures within the cerebello-thalamic pathway as pathological substrates for tremor in MS patients.
Asunto(s)
Cerebelo/diagnóstico por imagen , Esclerosis Múltiple/complicaciones , Tálamo/diagnóstico por imagen , Temblor/etiología , Temblor/patología , Adulto , Anciano , Evaluación de la Discapacidad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Estadísticas no ParamétricasRESUMEN
Up to half of all people with multiple sclerosis experience communication difficulties due to dysarthria, a disorder that impacts the motor aspects of speech production. Dysarthria in multiple sclerosis is linked to cerebellar dysfunction, disease severity and lesion load, but the neuroanatomical substrates of these symptoms remain unclear. In this study, 52 participants with multiple sclerosis and 14 age- and sex-matched healthy controls underwent structural and diffusion MRI, clinical assessment of disease severity and cerebellar dysfunction and a battery of motor speech tasks. Assessments of regional brain volume and white matter integrity, and their relationships with clinical and speech measures, were undertaken. White matter tracts of interest included the interhemispheric sensorimotor tract, cerebello-thalamo-cortical tract and arcuate fasciculus, based on their roles in motor and speech behaviours. Volumetric analyses were targeted to Broca's area, Wernicke's area, the corpus callosum, thalamus and cerebellum. Our results indicated that multiple sclerosis participants scored worse on all motor speech tasks. Fixel-based diffusion MRI analyses showed significant evidence of white matter tract atrophy in each tract of interest. Correlational analyses further indicated that higher speech naturalness-a perceptual measure of dysarthria-and lower reading rate were associated with axonal damage in the interhemispheric sensorimotor tract and left arcuate fasciculus in people with multiple sclerosis. Axonal damage in all tracts of interest also correlated with clinical scales sensitive to cerebellar dysfunction. Participants with multiple sclerosis had lower volumes of the thalamus and corpus callosum compared with controls, although no brain volumetrics correlated with measures of dysarthria. These findings indicate that axonal damage, particularly when measured using diffusion metrics, underpin dysarthria in multiple sclerosis.
RESUMEN
BACKGROUND: Remote objective tests may supplement in-clinic examination to better inform treatment decisions. Previous cross-sectional studies presented objective speech metrics as potential markers of Multiple Sclerosis (MS) disease progression. OBJECTIVE: To examine the short-term stability and long-term sensitivity of speech metrics to MS progression. METHODS: We prospectively recorded speech from people with MS at baseline, six, twelve weeks, and at ten months or longer after baseline (1y+). Only people with a definite diagnosis of MS and without other potential causes of dysarthria were included. Speech tasks comprehended 1) a sustained vowel /a/, 2) saying the days of the week, 3) repeating the non-word pa-ta-ka multiple times as fast as possible, 4) reading the Grandfather Passage, and 5) telling a personal story. We selected speech metrics of interest according to their association with MS presence, correlation with general disability, and short-term metric stability in the absence of disease progression. Selected speech metrics were analysed for short- versus long-term changes in the whole MS cohort and in the clinically stable versus progression subgroups at 1y+. RESULTS: Sixty-nine people with MS participated (76.8 % female, age mean 47.5 ± 11.1 SD, EDSS median 3.5, interquartile range 3.5). Twenty-six unique speech metrics satisfied the suitability criteria. On average, reading rate improved 3.5 % for all people with MS and 6.5 % for slow readers with MS from baseline to the six-week, driven by a reduction in pauses. At 1y+, participants showed a 3.1 % average reduction in vocalization time during the reading task, which was similar in the progression (n = 29) and non-progression (n = 40) groups and thus unrelated to disease progression. Both findings are in the opposite direction of what would be generally expected for deterioration in speech performance and might be attributable to familiarity and training effects. Other speech metrics showed either negligible change or a similar variability between short-term and long-term differences. CONCLUSION: Most individual long-term changes were small and within short-term variability intervals, irrespective of clinical disease progression. Familiarity and practice effects might have blunted the measurement of change. The present lack of longitudinal sensitivity of speech in MS contradicts previous cross-sectional findings and requires further investigation.
Asunto(s)
Progresión de la Enfermedad , Esclerosis Múltiple , Humanos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Estudios Longitudinales , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/fisiopatología , Esclerosis Múltiple/diagnóstico , Disartria/etiología , Disartria/fisiopatología , Disartria/diagnóstico , Habla/fisiología , Estudios ProspectivosRESUMEN
Introduction: Functional magnetic resonance imaging (fMRI) can improve our understanding of neural processes subserving motor speech function. Yet its reproducibility remains unclear. This study aimed to evaluate the reproducibility of fMRI using a word repetition task across two time points. Methods: Imaging data from 14 healthy controls were analysed using a multi-level general linear model. Results: Significant activation was observed during the task in the right hemispheric cerebellar lobules IV-V, right putamen, and bilateral sensorimotor cortices. Activation between timepoints was found to be moderately reproducible across time in the cerebellum but not in other brain regions. Discussion: Preliminary findings highlight the involvement of the cerebellum and connected cerebral regions during a motor speech task. More work is needed to determine the degree of reproducibility of speech fMRI before this could be used as a reliable marker of changes in brain activity.
RESUMEN
BACKGROUND: Upper limb tremor is common in people with multiple sclerosis (pwMS) and can affect day to day function, impacting on their tremor related quality of life (tremor-QOL). The Quality of Life in Essential Tremor Questionnaire (QUEST) is a tremor-QOL scale, however it has not been validated for use in pwMS. This is in contrast to the Multiple Sclerosis Impact Scale (MSIS-29), a MS health related QOL (MS-QOL) scale validated in pwMS. The aim of this study was to quantify tremor-QOL in pwMS using both the QUEST and MSIS-29 and establish the convergent validity of the QUEST scale with the MSIS-29. METHODS: Data were derived from an existing registered clinical trial studying the efficacy of Botox (onabotulinumtoxinA) compared to placebo in pwMS-related upper limb tremor (ACTRN12617000379314). We determined MS-related disability (Expanded Disability status scale score (EDSS)), tremor severity (Bain and Findley Clinical Tremor Rating Scale (Bain)), cerebellar function (Scale for the Assessment and rating of Ataxia (SARA)), and upper limb manual dexterity (9 Hole Peg Test (9-HPT)). The QUEST and MSIS-29 were used to quantify tremor-QOL and MS-QOL respectively. Convergent validity was investigated by examining the correlation between QUEST and MSIS-29, and the pattern of correlation of the two scales compared to the EDSS, SARA, BAIN and 9-HPT. RESULTS: Our cohort of 57 patients (16 male; 41 female), mean age of 47.6, had moderate MS-related disability with median EDSS score of 5 (IQR = 3.5). Median Bain score was 8, indicating mild tremor severity, which corresponded to mild to moderately poor tremor-QOL given mean Quest Summary Index (QSI) of 45.7. QSI correlated to tremor severity as measured by Bain total score (rs(55) = 0.339, p < 0.01), manual dexterity as measured by 9-HPT (rs(55) = 0.304, p < 0.05), and MS disease activity measured by EDSS (rs(55) = 0.347, p < 0.01). MSIS-29 also showed correlations to EDSS, and 9-HPT, but did not correlate to Bain total score. There was a strong relationship between QSI and MSIS-29 in pwMS (r(55) = 0.709, p < 0.01). CONCLUSION: In this cross-sectional study, we found that both the MS-QOL and tremor-QOL of pwMS with upper limb tremor was reduced. We were also the first to demonstrate that tremor-QOL in pwMS with upper limb tremor can be measured using the QUEST, which may be better suited for use in pwMS affected by arm-tremor than the MSIS-29. There is a lack of literature to specifically address tremor-QOL in pwMS, and more research is warranted.
Asunto(s)
Esclerosis Múltiple , Calidad de Vida , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/tratamiento farmacológico , Encuestas y Cuestionarios , Temblor/etiologíaRESUMEN
Axonal loss in the CNS is a key driver of progressive neurological impairments in people with multiple sclerosis. Currently, there are no established methods for tracking axonal loss clinically. This study aimed to determine the sensitivity of longitudinal diffusion MRI-derived fibre-specific measures of axonal loss in people with multiple sclerosis. Fibre measures were derived from diffusion MRI acquired as part of a standard radiological MRI protocol and were compared (i) to establish measures of neuro-axonal degeneration: brain parenchymal fraction and retinal nerve fibre layer thickness and (ii) between different disease stages: clinically isolated syndrome and early/late relapsing-remitting multiple sclerosis. Retrospectively identified data from 59 people with multiple sclerosis (18 clinically isolated syndrome, 22 early and 19 late relapsing-remitting) who underwent diffusion MRI as part of their routine clinical monitoring were collated and analysed. Twenty-six patients had 1-year and 14 patients had a 2-year follow-up. Brain parenchymal fraction was calculated from 3D MRI scans, and fibre-specific measures were calculated from diffusion MRI using multi-tissue constrained spherical deconvolution. At each study visit, patients underwent optical coherence tomography to determine retinal nerve fibre layer thickness, and standard neurological assessment expanded the disability status scale. We found a significant annual fibre-specific neuro-axonal degeneration (mean ± SD = -3.49 ± 3.32%, P < 0.001) that was â¼7 times larger than the annual change of brain parenchymal fraction (-0.53 ± 0.95%, P < 0.001), and more than four times larger than annual retinal nerve fibre layer thinning (-0.75 ± 2.50% P = 0.036). Only fibre-specific measures showed a significant difference in annual degeneration between the disease stages (P = 0.029). Reduced brain parenchymal fraction, retinal nerve fibre layer thickness and fibre-specific measures were moderately related to higher expanded disability status scale (rho = -0.368, rho = -0.408 and rho = -0.365, respectively). Fibre-specific measures can be measured from data collected within a standard radiological multiple sclerosis study and are substantially more sensitive to longitudinal change compared with brain atrophy and retinal nerve fibre layer thinning.
RESUMEN
Multiple sclerosis is a neuroinflammatory disease of the CNS that is associated with significant irreversible neuro-axonal loss, leading to permanent disability. There is thus an urgent need for in vivo markers of axonal loss for use in patient monitoring or as end-points for trials of neuroprotective agents. Advanced diffusion MRI can provide markers of diffuse loss of axonal fibre density or atrophy within specific white matter pathways. These markers can be interrogated in specific white matter tracts that underpin important functional domains such as sensorimotor function. This study aimed to evaluate advanced diffusion MRI markers of axonal loss within the major sensorimotor tracts of the brain, and to correlate the degree of axonal loss in these tracts to precise kinematic measures of hand and foot motor control and gait in minimally disabled people with multiple sclerosis. Twenty-eight patients (Expanded Disability Status Scale < 4, and Kurtzke Functional System Scores for pyramidal and cerebellar function ≤ 2) and 18 healthy subjects underwent ultra-high field 7 Tesla diffusion MRI for calculation of fibre-specific measures of axonal loss (fibre density, reflecting diffuse axonal loss and fibre cross-section reflecting tract atrophy) within three tracts: cortico-spinal tract, interhemispheric sensorimotor tract and cerebello-thalamic tracts. A visually guided force-matching task involving either the hand or foot was used to assess visuomotor control, and three-dimensional marker-based video tracking was used to assess gait. Fibre-specific axonal markers for each tract were compared between groups and correlated with visuomotor task performance (force error and lag) and gait parameters (stance, stride length, step width, single and double support) in patients. Patients displayed significant regional loss of fibre cross-section with minimal loss of fibre density in all tracts of interest compared to healthy subjects (family-wise error corrected p-value < 0.05), despite relatively few focal lesions within these tracts. In patients, reduced axonal fibre density and cross-section within the corticospinal tracts and interhemispheric sensorimotor tracts were associated with larger force tracking error and gait impairments (shorter stance, smaller step width and longer double support) (family-wise error corrected p-value < 0.05). In conclusion, significant gait and motor control impairments can be detected in minimally disabled people with multiple sclerosis that correlated with axonal loss in major sensorimotor pathways of the brain. Given that axonal loss is irreversible, the combined use of advanced imaging and kinematic markers could be used to identify patients at risk of more severe motor impairments as they emerge for more aggressive therapeutic interventions.
RESUMEN
BACKGROUND: Treatment of tremor in MS is an unmet need. OnabotulinumtoxinA (BoNT-A) has shown promising results; however, little is known regarding its effects on the brain. The clinical presentation of tremor MS is shown to depend on subcortical neural damage and cortical neural plasticity. This study aimed to identify effects of onabotulinumtoxinA (BoNT-A) on brain activation in MS and upper-limb tremor using functional MRI. METHODS: Forty-three MS participants with tremor were randomized to receive intramuscular injections of placebo (n = 22) or BoNT-A (n = 21). Tremor was quantified using the Bain score (0-10) for severity, handwriting and Archimedes drawing at baseline, 6 weeks and 12 weeks. Functional MRI activation within two previously identified clusters, ipsilateral inferior parietal cortex (IPL) and premotor/supplementary motor cortex (SMC) of compensatory activity, was measured at baseline and 6 weeks. RESULTS: Treatment with BoNT-A resulted in improved handwriting tremor at 6 weeks (p = 0.049) and 12 weeks (p = 0.014), and tremor severity -0.79 (p = 0.007) at 12 weeks. Furthermore, the patients that received BoNT-A showed a reduction in activation within the IPL (p = 0.034), but not in the SMC. The change in IPL activation correlated with the reduction in tremor severity from baseline to 12 weeks (ß = 0.608; p = 0.015) in the BoNT-A group. No tremor and fMRI changes were seen in the placebo treated group. CONCLUSION: We have shown that reduction in MS-tremor severity after intramuscular injection with BoNT-A is associated with changes in brain activity in sensorimotor integration regions.
Asunto(s)
Toxinas Botulínicas Tipo A/farmacología , Esclerosis Múltiple/complicaciones , Fármacos Neuromusculares/farmacología , Plasticidad Neuronal/fisiología , Corteza Sensoriomotora/fisiopatología , Temblor/tratamiento farmacológico , Extremidad Superior/fisiopatología , Adulto , Toxinas Botulínicas Tipo A/administración & dosificación , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Fármacos Neuromusculares/administración & dosificación , Desempeño Psicomotor/fisiología , Corteza Sensoriomotora/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Temblor/diagnóstico por imagen , Temblor/etiología , Temblor/fisiopatologíaRESUMEN
BACKGROUND: Tremor is a debilitating symptom of Multiple Sclerosis (MS). Little is known about its pathophysiology and treatments are limited. Clinical trials investigating new interventions often rely on subjective clinical rating scales to provide supporting evidence of efficacy. NEW METHOD: We present a novel instrument (TREMBAL) which uses electromagnetic motion capture technology to quantify MS tremor. We aim to validate TREMBAL by comparison to clinical ratings using regression modelling with 310 samples of tremor captured from 13 MS participants who performed five different hand exercises during several follow-up visits. Minimum detectable change (MDC) and test-retest reliability were calculated and comparisons were made between MS tremor and data from 12 healthy volunteers. RESULTS: Velocity of the index finger was most congruent with clinical observation. Regression modelling combining different features, sensor configurations, and labelling exercises did not improve results. TREMBAL MDC was 84% of its initial measurement compared to 91% for the clinical rating. Intra-class correlations for test-retest reliability were 0.781 for TREMBAL and 0.703 for clinical ratings. Tremor was lower (p = 0.002) in healthy subjects. COMPARISON WITH EXISTING METHODS: Subjective scales have low sensitivity, suffer from ceiling effects, and mitigation against inter-rater variability is challenging. Inertial sensors are ubiquitous, however, their output is nonlinearly related to tremor frequency, compensation is required for gravitational artefacts, and their raw data cannot be intuitively comprehended. CONCLUSIONS: TREMBAL, compared with clinical ratings, gave measures in agreement with clinical observation, had marginally lower MDC, and similar test-retest reliability.
Asunto(s)
Esclerosis Múltiple/complicaciones , Temblor/diagnóstico por imagen , Fenómenos Biomecánicos , Fenómenos Electromagnéticos , Femenino , Mano/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Temblor/etiología , Temblor/fisiopatologíaRESUMEN
Introduction: Tremor of the upper limbs is a disabling symptom that is present during several neurological disorders and is currently without treatment. Functional MRI (fMRI) is an essential tool to investigate the pathophysiology of tremor and aid the development of treatment options. However, no adequately or standardized protocols for fMRI exists at present. Here we present a novel, online available fMRI task that could be used to assess the in vivo pathology of tremor. Objective: This study aims to validate the tremor-evoking potential of the fMRI task in a small group of tremor patients outside the scanner and assess the reproducibility of the fMRI task related activation in healthy controls. Methods: Twelve HCs were scanned at two time points (baseline and after 6-weeks). There were two runs of multi-band fMRI and the tasks included a "brick-breaker" joystick game. The game consisted of three conditions designed to control for most of the activation related to performing the task by contrasting the conditions: WATCH (look at the game without moving joystick), MOVE (rhythmic left/right movement of joystick without game), and PLAY (playing the game). Task fMRI was analyzed using FSL FEAT to determine clusters of activation during the different conditions. Maximum activation within the clusters was used to assess the ability to control for task related activation and reproducibility. Four tremor patients have been included to test ecological and construct validity of the joystick task by assessing tremor frequencies captured by the joystick. Results: In HCs the game activated areas corresponding to motor, attention and visual areas. Most areas of activation by our game showed moderate to good reproducibility (intraclass correlation coefficient (ICC) 0.531-0.906) with only inferior parietal lobe activation showing poor reproducibility (ICC 0.446). Furthermore, the joystick captured significantly more tremulous movement in tremor patients compared to HCs (p = 0.01) during PLAY, but not during MOVE. Conclusion: Validation of our novel task confirmed tremor-evoking potential and reproducibility analyses yielded acceptable results to continue further investigations into the pathophysiology of tremor. The use of this technique in studies with tremor patient will no doubt provide significant insights into the treatment options.
RESUMEN
IMPORTANCE: Multiple sclerosis produces neurological impairments that are variable in duration, severity and quality. Speech is frequently impaired, resulting in decreased communication skills and quality of life. Advancements in technology now makes it possible to use quantitative acoustic assessment of speech as biomarkers of disease progression. OBSERVATIONS: Four domains of speech have been identified: articulation (slow articulation and imprecise consonants), voice (pitch and loudness instability), respiration (decreased phonatory time and expiratory pressure) and prosody (longer and frequent pauses, deficient loudness control). Studies also explored I) predictive models for diagnosis of MS and of ataxia using speech variables, II) the relationship of dysarthria with cognition and III) very few studies correlated neuroimaging with dysarthria. We could not identify longitudinal studies of speech or dysarthria in Multiple Sclerosis. CONCLUSION AND RELEVANCE: Refinement of objective measures of speech has enhanced our understanding of Multiple Sclerosis-related deficits in cross-sectional analysis while both integrative and longitudinal studies are identified as major gaps. This review highlights the potential for using quantitative acoustic assessments as clinical endpoints for diagnosing, monitoring progression and treatment in disease modifying trials.
Asunto(s)
Disartria/etiología , Disartria/fisiopatología , Esclerosis Múltiple/complicaciones , Calidad de Vida , Habla/fisiología , Progresión de la Enfermedad , Humanos , Índice de Severidad de la EnfermedadRESUMEN
OBJECTIVE: To provide a comprehensive description of motor speech function in behavioral variant frontotemporal dementia (bvFTD). METHODS: Forty-eight individuals (24 bvFTD and 24 age- and sex-matched healthy controls) provided speech samples. These varied in complexity and thus cognitive demand. Their language was assessed using the Progressive Aphasia Language Scale and verbal fluency tasks. Speech was analyzed perceptually to describe the nature of deficits and acoustically to quantify differences between patients with bvFTD and healthy controls. Cortical thickness and subcortical volume derived from MRI scans were correlated with speech outcomes in patients with bvFTD. RESULTS: Speech of affected individuals was significantly different from that of healthy controls. The speech signature of patients with bvFTD is characterized by a reduced rate (75%) and accuracy (65%) on alternating syllable production tasks, and prosodic deficits including reduced speech rate (45%), prolonged intervals (54%), and use of short phrases (41%). Groups differed on acoustic measures derived from the reading, unprepared monologue, and diadochokinetic tasks but not the days of the week or sustained vowel tasks. Variability of silence length was associated with cortical thickness of the inferior frontal gyrus and insula and speech rate with the precentral gyrus. CONCLUSIONS: One in 8 patients presented with moderate speech timing deficits with a further two-thirds rated as mild or subclinical. Subtle but measurable deficits in prosody are common in bvFTD and should be considered during disease management. Language function correlated with speech timing measures derived from the unprepared monologue only.
Asunto(s)
Demencia Frontotemporal/fisiopatología , Demencia Frontotemporal/psicología , Destreza Motora , Habla , Corteza Cerebral/diagnóstico por imagen , Femenino , Demencia Frontotemporal/diagnóstico por imagen , Humanos , Prueba de Tolerancia a la Lactosa , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Fenotipo , Medición de la Producción del HablaRESUMEN
Subtle gait and balance dysfunction is a precursor to loss of mobility in multiple sclerosis (MS). Biomechanical assessments using advanced gait and balance analysis technologies can identify these subtle changes and could be used to predict mobility loss early in the disease. This update critically evaluates advanced gait and balance analysis technologies and their applicability to identifying early lower limb dysfunction in people with MS. Non-wearable (motion capture systems, force platforms, and sensor-embedded walkways) and wearable (pressure and inertial sensors) biomechanical analysis systems have been developed to provide quantitative gait and balance assessments. Non-wearable systems are highly accurate, reliable and provide detailed outcomes, but require cumbersome and expensive equipment. Wearable systems provide less detail but can be used in community settings and can provide real-time feedback to patients and clinicians. Biomechanical analysis using advanced gait and balance analysis technologies can identify changes in gait and balance in early MS and consequently have the potential to significantly improve monitoring of mobility changes in MS.