Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Microbiol ; 101(3): 381-93, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27073104

RESUMEN

Emerging resistance to first-line antimalarial combination therapies threatens malaria treatment and the global elimination campaign. Improved therapeutic strategies are required to protect existing drugs and enhance treatment efficacy. We report that the piperazine-containing compound ACT-451840 exhibits single-digit nanomolar inhibition of the Plasmodium falciparum asexual blood stages and transmissible gametocyte forms. Genome sequence analyses of in vitro-derived ACT-451840-resistant parasites revealed single nucleotide polymorphisms in pfmdr1, which encodes a digestive vacuole membrane-bound ATP-binding cassette transporter known to alter P. falciparum susceptibility to multiple first-line antimalarials. CRISPR-Cas9 based gene editing confirmed that PfMDR1 point mutations mediated ACT-451840 resistance. Resistant parasites demonstrated increased susceptibility to the clinical drugs lumefantrine, mefloquine, quinine and amodiaquine. Stage V gametocytes harboring Cas9-introduced pfmdr1 mutations also acquired ACT-451840 resistance. These findings reveal that PfMDR1 mutations can impart resistance to compounds active against asexual blood stages and mature gametocytes. Exploiting PfMDR1 resistance mechanisms provides new opportunities for developing disease-relieving and transmission-blocking antimalarials.


Asunto(s)
Acrilamidas/farmacología , Antimaláricos/farmacología , Artemisininas/farmacología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Piperazinas/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , ADN Protozoario/genética , ADN Protozoario/metabolismo , Resistencia a Medicamentos , Sinergismo Farmacológico , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Plasmodium falciparum/metabolismo , Mutación Puntual , Polimorfismo de Nucleótido Simple
2.
PLoS Genet ; 9(2): e1003293, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23408914

RESUMEN

Malaria parasites elude eradication attempts both within the human host and across nations. At the individual level, parasites evade the host immune responses through antigenic variation. At the global level, parasites escape drug pressure through single nucleotide variants and gene copy amplification events conferring drug resistance. Despite their importance to global health, the rates at which these genomic alterations emerge have not been determined. We studied the complete genomes of different Plasmodium falciparum clones that had been propagated asexually over one year in the presence and absence of drug pressure. A combination of whole-genome microarray analysis and next-generation deep resequencing (totaling 14 terabases) revealed a stable core genome with only 38 novel single nucleotide variants appearing in seventeen evolved clones (avg. 5.4 per clone). In clones exposed to atovaquone, we found cytochrome b mutations as well as an amplification event encompassing the P. falciparum multidrug resistance associated protein (mrp1) on chromosome 1. We observed 18 large-scale (>1 kb on average) deletions of telomere-proximal regions encoding multigene families, involved in immune evasion (9.5×10(-6) structural variants per base pair per generation). Six of these deletions were associated with chromosomal crossovers generated during mitosis. We found only minor differences in rates between genetically distinct strains and between parasites cultured in the presence or absence of drug. Using these derived mutation rates for P. falciparum (1.0-9.7×10(-9) mutations per base pair per generation), we can now model the frequency at which drug or immune resistance alleles will emerge under a well-defined set of assumptions. Further, the detection of mitotic recombination events in var gene families illustrates how multigene families can arise and change over time in P. falciparum. These results will help improve our understanding of how P. falciparum evolves to evade control efforts within both the individual hosts and large populations.


Asunto(s)
Antígenos , Atovacuona/administración & dosificación , Resistencia a Múltiples Medicamentos , Interacciones Huésped-Parásitos , Plasmodium falciparum , Variación Antigénica/efectos de los fármacos , Variación Antigénica/genética , Antígenos/efectos de los fármacos , Antígenos/genética , Citocromos b/genética , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Múltiples Medicamentos/genética , Evolución Molecular , Genoma de Protozoos/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/inmunología , Humanos , Malaria Falciparum/genética , Malaria Falciparum/inmunología , Mitosis/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/inmunología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología
3.
Proc Natl Acad Sci U S A ; 108(4): 1627-32, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21205898

RESUMEN

Intraerythrocytic malaria parasites can obtain nearly their entire amino acid requirement by degrading host cell hemoglobin. The sole exception is isoleucine, which is not present in adult human hemoglobin and must be obtained exogenously. We evaluated two compounds for their potential to interfere with isoleucine utilization. Mupirocin, a clinically used antibacterial, kills Plasmodium falciparum parasites at nanomolar concentrations. Thiaisoleucine, an isoleucine analog, also has antimalarial activity. To identify targets of the two compounds, we selected parasites resistant to either mupirocin or thiaisoleucine. Mutants were analyzed by genome-wide high-density tiling microarrays, DNA sequencing, and copy number variation analysis. The genomes of three independent mupirocin-resistant parasite clones had all acquired either amplifications encompassing or SNPs within the chromosomally encoded organellar (apicoplast) isoleucyl-tRNA synthetase. Thiaisoleucine-resistant parasites had a mutation in the cytoplasmic isoleucyl-tRNA synthetase. The role of this mutation in thiaisoleucine resistance was confirmed by allelic replacement. This approach is generally useful for elucidation of new targets in P. falciparum. Our study shows that isoleucine utilization is an essential pathway that can be targeted for antimalarial drug development.


Asunto(s)
Isoleucina-ARNt Ligasa/metabolismo , Isoleucina/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Adulto , Animales , Antibacterianos/farmacología , Relación Dosis-Respuesta a Droga , Resistencia a Medicamentos/genética , Eritrocitos/parasitología , Genoma de Protozoos/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hemoglobinas/metabolismo , Humanos , Isoleucina/análogos & derivados , Isoleucina/farmacología , Isoleucina-ARNt Ligasa/genética , Microscopía Fluorescente , Mupirocina/farmacología , Mutación , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple , Proteínas Protozoarias/genética
4.
Genome Res ; 20(11): 1534-44, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20829224

RESUMEN

Here, we fully characterize the genomes of 14 Plasmodium falciparum patient isolates taken recently from the Iquitos region using genome scanning, a microarray-based technique that delineates the majority of single-base changes, indels, and copy number variants distinguishing the coding regions of two clones. We show that the parasite population in the Peruvian Amazon bears a limited number of genotypes and low recombination frequencies. Despite the essentially clonal nature of some isolates, we see high frequencies of mutations in subtelomeric highly variable genes and internal var genes, indicating mutations arising during self-mating or mitotic replication. The data also reveal that one or two meioses separate different isolates, showing that P. falciparum clones isolated from different individuals in defined geographical regions could be useful in linkage analyses or quantitative trait locus studies. Through pairwise comparisons of different isolates we discovered point mutations in the apicoplast genome that are close to known mutations that confer clindamycin resistance in other species, but which were hitherto unknown in malaria parasites. Subsequent drug sensitivity testing revealed over 100-fold increase of clindamycin EC(50) in strains harboring one of these mutations. This evidence of clindamycin-resistant parasites in the Amazon suggests that a shift should be made in health policy away from quinine + clindamycin therapy for malaria in pregnant women and infants, and that the development of new lincosamide antibiotics for malaria should be reconsidered.


Asunto(s)
Inestabilidad Cromosómica , Mapeo Cromosómico , Clindamicina , Resistencia a Medicamentos/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Antimaláricos/uso terapéutico , Secuencia de Bases , Inestabilidad Cromosómica/genética , Mapeo Cromosómico/métodos , Clindamicina/uso terapéutico , Variaciones en el Número de Copia de ADN , Femenino , Frecuencia de los Genes , Genoma de Protozoos , Genotipo , Humanos , Lactante , Malaria Falciparum/diagnóstico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/genética , Masculino , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Linaje , Perú , Embarazo , Telómero/genética
5.
Malar J ; 12: 316, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-24025732

RESUMEN

BACKGROUND: One of the main causes of mortality from severe malaria in Plasmodium falciparum infections is cerebral malaria (CM). An important host genetic component determines the susceptibility of an individual to develop CM or to clear the infection and become semi-immune. As such, the identification of genetic loci associated with susceptibility or resistance may serve to modulate disease severity. METHODOLOGY: The Plasmodium berghei mouse model for experimental cerebral malaria (ECM) reproduces several disease symptoms seen in human CM, and two different phenotypes, a susceptible (FVB/NJ) and a resistant mouse strain (DBA/2J), were examined. RESULTS: FVB/NJ mice died from infection within ten days, whereas DBA/2J mice showed a gender bias: males survived on average nineteen days and females either died early with signs of ECM or survived for up to three weeks. A comparison of brain pathology between FVB/NJ and DBA/2J showed no major differences with regard to brain haemorrhages or the number of parasites and CD3+ cells in the microvasculature. However, significant differences were found in the peripheral blood of infected mice: For example resistant DBA/2J mice had significantly higher numbers of circulating basophils than did FVB/NJ mice on day seven. Analysis of the F2 offspring from a cross of DBA/2J and FVB/NJ mice mapped the genetic locus of the underlying survival trait to chromosome 9 with a Lod score of 4.9. This locus overlaps with two previously identified resistance loci (char1 and pymr) from a blood stage malaria model. CONCLUSIONS: Survival best distinguishes malaria infections between FVB/NJ and DBA/2J mice. The importance of char1 and pymr on chromosome 9 in malaria resistance to P. berghei was confirmed. In addition there was an association of basophil numbers with survival.


Asunto(s)
Cromosomas Humanos Par 9 , Resistencia a la Enfermedad , Sitios Genéticos , Malaria Cerebral/genética , Malaria Cerebral/inmunología , Plasmodium berghei/inmunología , Animales , Basófilos/inmunología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Análisis de Supervivencia
6.
ACS Infect Dis ; 5(4): 515-520, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30773881

RESUMEN

We have previously identified the cytoplasmic prolyl tRNA synthetase in Plasmodium falciparum as the functional target of the natural product febrifugine and its synthetic analogue halofuginone (HFG), one of the most potent antimalarials discovered to date. However, our studies also discovered that short-term treatment of asexual blood stage P. falciparum with HFG analogues causes a 20-fold increase in intracellular proline, termed the adaptive proline response (APR), which renders parasites tolerant to HFG. This novel resistance phenotype lacks an apparent genetic basis but remains stable after drug withdrawal. On the basis of our findings that HFG treatment induces eIF2α phosphorylation, a sensitive marker and mediator of cellular stress, we here investigate if eIF2α-signaling is functionally linked to the APR. In our comparative studies using a parasite line lacking PfeIK1, the Plasmodium orthologue of the eIF2α-kinase GCN2 that mediates amino acid deprivation sensing, we show that HFG activity and the APR are independent from PfeIK1 and eIF2α signaling.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Plasmodium falciparum/metabolismo , Prolina/metabolismo , Proteínas Protozoarias/metabolismo , Aminoacil-ARNt Sintetasas/genética , Antimaláricos/farmacología , Resistencia a Medicamentos , Factor 2 Eucariótico de Iniciación/genética , Humanos , Malaria Falciparum/parasitología , Fosforilación , Piperidinas/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Quinazolinonas/farmacología , Transducción de Señal/efectos de los fármacos
7.
Sci Transl Med ; 7(288): 288ra77, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25995223

RESUMEN

The emergence of drug resistance is a major limitation of current antimalarials. The discovery of new druggable targets and pathways including those that are critical for multiple life cycle stages of the malaria parasite is a major goal for developing next-generation antimalarial drugs. Using an integrated chemogenomics approach that combined drug resistance selection, whole-genome sequencing, and an orthogonal yeast model, we demonstrate that the cytoplasmic prolyl-tRNA (transfer RNA) synthetase (PfcPRS) of the malaria parasite Plasmodium falciparum is a biochemical and functional target of febrifugine and its synthetic derivative halofuginone. Febrifugine is the active principle of a traditional Chinese herbal remedy for malaria. We show that treatment with febrifugine derivatives activated the amino acid starvation response in both P. falciparum and a transgenic yeast strain expressing PfcPRS. We further demonstrate in the Plasmodium berghei mouse model of malaria that halofuginol, a new halofuginone analog that we developed, is active against both liver and asexual blood stages of the malaria parasite. Halofuginol, unlike halofuginone and febrifugine, is well tolerated at efficacious doses and represents a promising lead for the development of dual-stage next-generation antimalarials.


Asunto(s)
Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Antimaláricos/farmacología , Inhibidores Enzimáticos/farmacología , Malaria Falciparum/tratamiento farmacológico , Piperidinas/farmacología , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Quinazolinas/farmacología , Quinazolinonas/farmacología , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Antimaláricos/química , Antimaláricos/toxicidad , Diseño Asistido por Computadora , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Resistencia a Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/toxicidad , Eritrocitos/parasitología , Hígado/parasitología , Malaria Falciparum/sangre , Malaria Falciparum/parasitología , Ratones , Modelos Moleculares , Estructura Molecular , Terapia Molecular Dirigida , Piperidinas/química , Piperidinas/toxicidad , Plasmodium falciparum/enzimología , Proteínas Protozoarias/metabolismo , Quinazolinas/química , Quinazolinas/toxicidad , Quinazolinonas/química , Quinazolinonas/toxicidad , Relación Estructura-Actividad , Factores de Tiempo
8.
Science ; 334(6061): 1372-7, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22096101

RESUMEN

Most malaria drug development focuses on parasite stages detected in red blood cells, even though, to achieve eradication, next-generation drugs active against both erythrocytic and exo-erythrocytic forms would be preferable. We applied a multifactorial approach to a set of >4000 commercially available compounds with previously demonstrated blood-stage activity (median inhibitory concentration < 1 micromolar) and identified chemical scaffolds with potent activity against both forms. From this screen, we identified an imidazolopiperazine scaffold series that was highly enriched among compounds active against Plasmodium liver stages. The orally bioavailable lead imidazolopiperazine confers complete causal prophylactic protection (15 milligrams/kilogram) in rodent models of malaria and shows potent in vivo blood-stage therapeutic activity. The open-source chemical tools resulting from our effort provide starting points for future drug discovery programs, as well as opportunities for researchers to investigate the biology of exo-erythrocytic forms.


Asunto(s)
Antimaláricos/farmacología , Descubrimiento de Drogas , Imidazoles/farmacología , Hígado/parasitología , Malaria/tratamiento farmacológico , Piperazinas/farmacología , Plasmodium/efectos de los fármacos , Animales , Antimaláricos/química , Antimaláricos/farmacocinética , Antimaláricos/uso terapéutico , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Resistencia a Medicamentos , Eritrocitos/parasitología , Humanos , Imidazoles/química , Imidazoles/farmacocinética , Imidazoles/uso terapéutico , Malaria/parasitología , Malaria/prevención & control , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Piperazinas/química , Piperazinas/farmacocinética , Piperazinas/uso terapéutico , Plasmodium/citología , Plasmodium/crecimiento & desarrollo , Plasmodium/fisiología , Plasmodium berghei/citología , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/fisiología , Plasmodium falciparum/citología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/fisiología , Plasmodium yoelii/citología , Plasmodium yoelii/efectos de los fármacos , Plasmodium yoelii/crecimiento & desarrollo , Plasmodium yoelii/fisiología , Polimorfismo de Nucleótido Simple , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Distribución Aleatoria , Bibliotecas de Moléculas Pequeñas , Esporozoítos/efectos de los fármacos , Esporozoítos/crecimiento & desarrollo
9.
PLoS One ; 5(5): e10903, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20531941

RESUMEN

The genetic background of a patient determines in part if a person develops a mild form of malaria and recovers, or develops a severe form and dies. We have used a mouse model to detect genes involved in the resistance or susceptibility to Plasmodium berghei malaria infection. To this end we first characterized 32 different mouse strains infected with P. berghei and identified survival as the best trait to discriminate between the strains. We found a locus on chromosome 6 by linking the survival phenotypes of the mouse strains to their genetic variations using genome wide analyses such as haplotype associated mapping and the efficient mixed-model for association. This new locus involved in malaria resistance contains only two genes and confirms the importance of Ppar-gamma in malaria infection.


Asunto(s)
Sitios Genéticos/genética , Genoma/genética , Malaria/genética , PPAR gamma/genética , Animales , Cromosomas de los Mamíferos/genética , Susceptibilidad a Enfermedades , Haplotipos/genética , Ratones , Ratones Endogámicos , Fenotipo , Plasmodium berghei/fisiología , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA