Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Exp Bot ; 75(14): 4210-4218, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38400751

RESUMEN

All land plants-the embryophytes-produce multicellular embryos, as do other multicellular organisms, such as brown algae and animals. A unique characteristic of plant embryos is their immobile and confined nature. Their embedding in maternal tissues may offer protection from the environment, but also physically constrains development. Across the different land plants, a huge discrepancy is present between their reproductive structures whilst leading to similarly complex embryos. Therefore, we review the roles that maternal tissues play in the control of embryogenesis across land plants. These nurturing, constraining, and protective roles include both direct and indirect effects. In this review, we explore how the maternal surroundings affect embryogenesis and which chemical and mechanical barriers are in place. We regard these questions through the lens of evolution, and identify key questions for future research.


Asunto(s)
Semillas , Semillas/crecimiento & desarrollo , Embryophyta/crecimiento & desarrollo , Evolución Biológica
2.
J Exp Bot ; 75(14): 4415-4427, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38877792

RESUMEN

Major constituents of the plant cell walls are structural proteins that belong to the hydroxyproline-rich glycoprotein (HRGP) family. Leucine-rich repeat extensin (LRX) proteins contain a leucine-rich domain and a C-terminal domain with repetitive Ser-Pro3-5 motifs that are potentially to be O-glycosylated. It has been demonstrated that pollen-specific LRX8-LRX11 from Arabidopsis thaliana are necessary to maintain the integrity of the pollen tube cell wall during polarized growth. In HRGPs, including classical extensins (EXTs), and probably in LRXs, proline residues are converted to hydroxyproline by prolyl-4-hydroxylases (P4Hs), thus defining novel O-glycosylation sites. In this context, we aimed to determine whether hydroxylation and subsequent O-glycosylation of Arabidopsis pollen LRXs are necessary for their proper function and cell wall localization in pollen tubes. We hypothesized that pollen-expressed P4H4 and P4H6 catalyze the hydroxylation of the proline units present in Ser-Pro3-5 motifs of LRX8-LRX11. Here, we show that the p4h4-1 p4h6-1 double mutant exhibits a reduction in pollen germination rates and a slight reduction in pollen tube length. Pollen germination is also inhibited by P4H inhibitors, suggesting that prolyl hydroxylation is required for pollen tube development. Plants expressing pLRX11::LRX11-GFP in the p4h4-1 p4h6-1 background show partial re-localization of LRX11-green fluorescent protein (GFP) from the pollen tube tip apoplast to the cytoplasm. Finally, immunoprecipitation-tandem mass spectrometry analysis revealed a decrease in oxidized prolines (hydroxyprolines) in LRX11-GFP in the p4h4-1 p4h6-1 background compared with lrx11 plants expressing pLRX11::LRX11-GFP. Taken together, these results suggest that P4H4 and P4H6 are required for pollen germination and for proper hydroxylation of LRX11 necessary for its localization in the cell wall of pollen tubes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Tubo Polínico , Prolil Hidroxilasas , Arabidopsis/metabolismo , Arabidopsis/genética , Hidroxilación , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Tubo Polínico/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Prolil Hidroxilasas/metabolismo , Prolil Hidroxilasas/genética , Pared Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA