Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33903255

RESUMEN

Education has been related to various advantageous lifetime outcomes. Here, using longitudinal structural MRI data (4,422 observations), we tested the influential hypothesis that higher education translates into slower rates of brain aging. Cross-sectionally, education was modestly associated with regional cortical volume. However, despite marked mean atrophy in the cortex and hippocampus, education did not influence rates of change. The results were replicated across two independent samples. Our findings challenge the view that higher education slows brain aging.


Asunto(s)
Envejecimiento/fisiología , Corteza Cerebral/fisiología , Educación , Hipocampo/fisiología , Anciano , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Corteza Cerebral/diagnóstico por imagen , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
2.
Front Aging Neurosci ; 9: 267, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28848424

RESUMEN

Previous studies have indicated that aerobic exercise could reduce age related decline in cognition and brain functioning. Here we investigated the effects of aerobic exercise on intrinsic brain activity. Sixty sedentary healthy males and females (64-78 years) were randomized into either an aerobic exercise group or an active control group. Both groups recieved supervised training, 3 days a week for 6 months. Multimodal brain imaging data was acquired before and after the intervention, including 10 min of resting state brain functional magnetic resonance imaging (rs-fMRI) and arterial spin labeling (ASL). Additionally, a comprehensive battery of cognitive tasks assessing, e.g., executive function and episodic memory was administered. Both the aerobic and the control group improved in aerobic capacity (VO2-peak) over 6 months, but a significant group by time interaction confirmed that the aerobic group improved more. Contrary to our hypothesis, we did not observe any significant group by time interactions with regard to any measure of intrinsic activity. To further probe putative relationships between fitness and brain activity, we performed post hoc analyses disregarding group belongings. At baseline, VO2-peak was negativly related to BOLD-signal fluctuations (BOLDSTD) in mid temporal areas. Over 6 months, improvements in aerobic capacity were associated with decreased connectivity between left hippocampus and contralateral precentral gyrus, and positively to connectivity between right mid-temporal areas and frontal and parietal regions. Independent component analysis identified a VO2-related increase in coupling between the default mode network and left orbitofrontal cortex, as well as a decreased connectivity between the sensorimotor network and thalamus. Extensive exploratory data analyses of global efficiency, connectome wide multivariate pattern analysis (connectome-MVPA), as well as ASL, did not reveal any relationships between aerobic fitness and intrinsic brain activity. Moreover, fitness-predicted changes in functional connectivity did not relate to changes in cognition, which is likely due to absent cross-sectional or longitudinal relationships between VO2-peak and cognition. We conclude that the aerobic exercise intervention had limited influence on patterns of intrinsic brain activity, although post hoc analyses indicated that individual changes in aerobic capacity preferentially influenced mid-temporal brain areas.

3.
Phys Med Biol ; 62(13): 5213-5227, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28561014

RESUMEN

In longitudinal positron emission tomography (PET), the presence of volumetric changes over time can lead to an overestimation or underestimation of the true changes in the quantified PET signal due to the partial volume effect (PVE) introduced by the limited spatial resolution of existing PET cameras and reconstruction algorithms. Here, a 3D-printed anthropomorphic brain phantom with attachable striata in three sizes was designed to enable controlled volumetric changes. Using a method to eliminate the non-radioactive plastic wall, and manipulating BP levels by adding different number of events from list-mode acquisitions, we investigated the artificial volume dependence of BP due to PVE, and potential bias arising from varying BP. Comparing multiple reconstruction algorithms we found that a high-resolution ordered-subsets maximization algorithm with spatially variant point-spread function resolution modeling provided the most accurate data. For striatum, the BP changed by 0.08% for every 1% volume change, but for smaller volumes such as the posterior caudate the artificial change in BP was as high as 0.7% per 1% volume change. A simple gross correction for striatal volume is unsatisfactory, as the amplitude of the PVE on the BP differs depending on where in the striatum the change occurred. Therefore, to correctly interpret age-related longitudinal changes in the BP, we must account for volumetric changes also within a structure, rather than across the whole volume. The present 3D-printing technology, combined with the wall removal method, can be implemented to gain knowledge about the predictable bias introduced by the PVE differences in uptake regions of varying shape.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/patología , Fantasmas de Imagen , Tomografía de Emisión de Positrones/instrumentación , Algoritmos , Atrofia/diagnóstico por imagen , Humanos , Neostriado/diagnóstico por imagen , Neostriado/patología
4.
Behav Brain Res ; 318: 45-51, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27838341

RESUMEN

Effective psychiatric treatments ameliorate excessive anxiety and induce neuroplasticity immediately after the intervention, indicating that emotional components in the human brain are rapidly adaptable. Still, the interplay between structural and functional neuroplasticity is poorly understood, and studies of treatment-induced long-term neuroplasticity are rare. Functional and structural magnetic resonance imaging (using 3T MRI) was performed in 13 subjects with social anxiety disorder on 3 occasions over 1year. All subjects underwent 9 weeks of Internet-delivered cognitive behaviour therapy in a randomized cross-over design and independent assessors used the Clinically Global Impression-Improvement (CGI-I) scale to determine treatment response. Gray matter (GM) volume, assessed with voxel-based morphometry, and functional blood-oxygen level-dependent (BOLD) responsivity to self-referential criticism were compared between treatment responders and non-responders using 2×2 (group×time; pretreatment to follow-up) ANOVA. At 1-year follow-up, 7 (54%) subjects were classified as CGI-I responders. Left amygdala GM volume was more reduced in responders relative to non-responders from pretreatment to 1-year follow-up (Z=3.67, Family-Wise Error corrected p=0.02). In contrast to previous short-term effects, altered BOLD activations to self-referential criticism did not separate responder groups at follow-up. The structure and function of the amygdala changes immediately after effective psychological treatment of social anxiety disorder, but only reduced amygdala GM volume, and not functional activity, is associated with a clinical response 1year after CBT.


Asunto(s)
Terapia Cognitivo-Conductual , Sustancia Gris/patología , Sustancia Gris/fisiopatología , Plasticidad Neuronal/fisiología , Fobia Social/fisiopatología , Adulto , Amígdala del Cerebelo/fisiología , Atrofia/patología , Estudios Cruzados , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroimagen , Fobia Social/terapia , Adulto Joven
5.
Neuropsychologia ; 89: 371-377, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27450266

RESUMEN

Learning new motor skills may become more difficult with advanced age. In the present study, we randomized 56 older individuals, including 30 women (mean age 70.6 years), to 6 weeks of motor training, mental (motor imagery) training, or a combination of motor and mental training of a finger tapping sequence. Performance improvements and post-training functional magnetic resonance imaging (fMRI) were used to investigate performance gains and associated underlying neural processes. Motor-only training and a combination of motor and mental training improved performance in the trained task more than mental-only training. The fMRI data showed that motor training was associated with a representation in the premotor cortex and mental training with a representation in the secondary visual cortex. Combining motor and mental training resulted in both premotor and visual cortex representations. During fMRI scanning, reduced performance was observed in the combined motor and mental training group, possibly indicating interference between the two training methods. We concluded that motor and motor imagery training in older individuals is associated with different functional brain responses. Furthermore, adding mental training to motor training did not result in additional performance gains compared to motor-only training and combining training methods may result in interference between representations, reducing performance.


Asunto(s)
Envejecimiento , Mapeo Encefálico , Encéfalo/fisiología , Aprendizaje/fisiología , Desempeño Psicomotor/fisiología , Transferencia de Experiencia en Psicología/fisiología , Anciano , Anciano de 80 o más Años , Análisis de Varianza , Encéfalo/diagnóstico por imagen , Femenino , Lateralidad Funcional/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Oxígeno/sangre , Factores de Tiempo
6.
Transl Psychiatry ; 6: e727, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26836415

RESUMEN

Patients with anxiety disorders exhibit excessive neural reactivity in the amygdala, which can be normalized by effective treatment like cognitive behavior therapy (CBT). Mechanisms underlying the brain's adaptation to anxiolytic treatments are likely related both to structural plasticity and functional response alterations, but multimodal neuroimaging studies addressing structure-function interactions are currently missing. Here, we examined treatment-related changes in brain structure (gray matter (GM) volume) and function (blood-oxygen level dependent, BOLD response to self-referential criticism) in 26 participants with social anxiety disorder randomly assigned either to CBT or an attention bias modification control treatment. Also, 26 matched healthy controls were included. Significant time × treatment interactions were found in the amygdala with decreases both in GM volume (family-wise error (FWE) corrected P(FWE) = 0.02) and BOLD responsivity (P(FWE) = 0.01) after successful CBT. Before treatment, amygdala GM volume correlated positively with anticipatory speech anxiety (P(FWE)=0.04), and CBT-induced reduction of amygdala GM volume (pre-post) correlated positively with reduced anticipatory anxiety after treatment (P(FWE) ⩽ 0.05). In addition, we observed greater amygdala neural responsivity to self-referential criticism in socially anxious participants, as compared with controls (P(FWE) = 0.029), before but not after CBT. Further analysis indicated that diminished amygdala GM volume mediated the relationship between decreased neural responsivity and reduced social anxiety after treatment (P=0.007). Thus, our results suggest that improvement-related structural plasticity impacts neural responsiveness within the amygdala, which could be essential for achieving anxiety reduction with CBT.


Asunto(s)
Trastornos de Ansiedad/fisiopatología , Trastornos de Ansiedad/terapia , Encéfalo/fisiopatología , Terapia Cognitivo-Conductual , Plasticidad Neuronal/fisiología , Adolescente , Adulto , Trastornos de Ansiedad/diagnóstico , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Adulto Joven
7.
Transl Psychiatry ; 5: e530, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25781229

RESUMEN

Cognitive behavior therapy (CBT) is an effective treatment for social anxiety disorder (SAD), but many patients do not respond sufficiently and a substantial proportion relapse after treatment has ended. Predicting an individual's long-term clinical response therefore remains an important challenge. This study aimed at assessing neural predictors of long-term treatment outcome in participants with SAD 1 year after completion of Internet-delivered CBT (iCBT). Twenty-six participants diagnosed with SAD underwent iCBT including attention bias modification for a total of 13 weeks. Support vector machines (SVMs), a supervised pattern recognition method allowing predictions at the individual level, were trained to separate long-term treatment responders from nonresponders based on blood oxygen level-dependent (BOLD) responses to self-referential criticism. The Clinical Global Impression-Improvement scale was the main instrument to determine treatment response at the 1-year follow-up. Results showed that the proportion of long-term responders was 52% (12/23). From multivariate BOLD responses in the dorsal anterior cingulate cortex (dACC) together with the amygdala, we were able to predict long-term response rate of iCBT with an accuracy of 92% (confidence interval 95% 73.2-97.6). This activation pattern was, however, not predictive of improvement in the continuous Liebowitz Social Anxiety Scale-Self-report version. Follow-up psychophysiological interaction analyses revealed that lower dACC-amygdala coupling was associated with better long-term treatment response. Thus, BOLD response patterns in the fear-expressing dACC-amygdala regions were highly predictive of long-term treatment outcome of iCBT, and the initial coupling between these regions differentiated long-term responders from nonresponders. The SVM-neuroimaging approach could be of particular clinical value as it allows for accurate prediction of treatment outcome at the level of the individual.


Asunto(s)
Trastornos de Ansiedad/terapia , Encéfalo/fisiopatología , Terapia Cognitivo-Conductual/métodos , Internet , Aprendizaje Automático , Imagen por Resonancia Magnética , Adulto , Trastornos de Ansiedad/fisiopatología , Mapeo Encefálico/métodos , Femenino , Humanos , Masculino , Terapia Asistida por Computador/métodos , Resultado del Tratamiento
8.
Neuropsychologia ; 78: 10-7, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26415670

RESUMEN

The variability of episodic memory decline and hippocampal atrophy observed with increasing age may partly be explained by genetic factors. KIBRA (kidney and brain expressed protein) and CLSTN2 (calsyntenin 2) are two candidate genes previously linked to episodic memory performance and volume of the hippocampus, a key memory structure. However, whether polymorphisms in these two genes also influence age-related longitudinal memory decline and hippocampal atrophy is still unknown. Using data from two independent cohorts, the Sydney Memory and Ageing Study and the Older Australian Twins Study, we investigated whether the KIBRA and CLSTN2 genetic polymorphisms (rs17070145 and rs6439886) are associated with episodic memory performance and hippocampal volume in older adults (65-90 years at baseline). We were able to examine these polymorphisms in relation to memory and hippocampal volume using cross-sectional data and, more importantly, also using longitudinal data (2 years between testing occasions). Overall we did not find support for an association of KIBRA either alone or in combination with CLSTN2 with memory performance or hippocampal volume, nor did variation in these genes influence longitudinal memory decline or hippocampal atrophy in two cohorts of older adults.


Asunto(s)
Proteínas de Unión al Calcio/genética , Hipocampo/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Memoria Episódica , Fosfoproteínas/genética , Polimorfismo de Nucleótido Simple , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Envejecimiento/patología , Envejecimiento/psicología , Atrofia/genética , Australia/epidemiología , Estudios Transversales , Femenino , Estudios de Asociación Genética , Técnicas de Genotipaje , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Trastornos de la Memoria/epidemiología , Trastornos de la Memoria/genética , Trastornos de la Memoria/patología , Pruebas Neuropsicológicas , Tamaño de los Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA