Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Am Chem Soc ; 146(17): 11887-11896, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38529556

RESUMEN

Monitoring the spontaneous reconstruction of the surface of metal oxides under electrocatalytic reaction conditions is critical to identifying the active sites and establishing structure-activity relationships. Here, we report on a self-terminated surface reconstruction of Ruddlesden-Popper lanthanum nickel oxide (La2NiO4+δ) that occurs spontaneously during reaction with alkaline electrolyte species. Using a combination of high-resolution scanning transmission electron microscopy (HR-STEM), surface-sensitive X-ray photoelectron spectroscopy (XPS), and soft X-ray absorption spectroscopy (sXAS), as well as electrochemical techniques, we identify the structure of the reconstructed surface layer as an amorphous (oxy)hydroxide phase that features abundant under-coordinated nickel sites. No further amorphization of the crystalline oxide lattice (beyond the ∼2 nm thick layer formed) was observed during oxygen evolution reaction (OER) cycling experiments. Notably, the formation of the reconstructed surface layer increases the material's oxygen evolution reaction (OER) activity by a factor of 45 when compared to that of the pristine crystalline surface. In contrast, a related perovskite phase, i.e., LaNiO3, did not show noticeable surface reconstruction, and also no increase in its OER activity was observed. This work provides detailed insight into a surface reconstruction behavior dictated by the crystal structure of the parent oxide and highlights the importance of surface dynamics under reaction conditions.

2.
Angew Chem Int Ed Engl ; 63(20): e202401056, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38472115

RESUMEN

Single-atom heterogeneous catalysts (SACs) hold promise as sustainable alternatives to metal complexes in organic transformations. However, their working structure and dynamics remain poorly understood, hindering advances in their design. Exploiting the unique features of droplet-based microfluidics, we present the first in-situ assessment of a palladium SAC based on exfoliated carbon nitride in Suzuki-Miyaura cross-coupling using X-ray absorption spectroscopy. Our results confirm a surface-catalyzed mechanism, revealing the distinct electronic structure of active Pd centers compared to homogeneous systems, and providing insights into the stabilizing role of ligands and bases. This study establishes a valuable framework for advancing mechanistic understanding of organic syntheses catalyzed by SACs.

3.
Environ Sci Technol ; 57(42): 16097-16108, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37822288

RESUMEN

The transformation of 2-line ferrihydrite to goethite from supersaturated solutions at alkaline pH ≥ 13.0 was studied using a combination of benchtop and advanced synchrotron techniques such as X-ray diffraction, thermogravimetric analysis, and X-ray absorption spectroscopy. In comparison to the transformation rates at acidic to mildly alkaline environments, the half-life, t1/2, of 2-line ferrihydrite reduces from several months at pH = 2.0, and approximately 15 days at pH = 10.0, to just under 5 h at pH = 14.0. The calculated-first order rate constants of transformation, k, increase exponentially with respect to the pH and follow the progression log10 k = log10 k0 + a·pH3. Simultaneous monitoring of the aqueous Fe(III) concentration via inductively coupled plasma optical emission spectroscopy demonstrates that (i) goethite likely precipitates from solution and (ii) its formation is rate-limited by the comparatively slow redissolution of 2-line ferrihydrite. The analysis presented can be used to estimate the transformation rate of naturally occurring 2-line ferrihydrite in aqueous electrolytes characteristic to mine and radioactive waste tailings as well as the formation of corrosion products in cementitious pore solutions.


Asunto(s)
Compuestos Férricos , Compuestos de Hierro , Compuestos Férricos/química , Compuestos de Hierro/química , Minerales/química , Agua , Concentración de Iones de Hidrógeno , Oxidación-Reducción
4.
New Phytol ; 234(2): 688-703, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35043984

RESUMEN

Phosphorus (P) is essential for plant growth. Arbuscular mycorrhizal fungi (AMF) aid its uptake by acquiring P from sources distant from roots in return for carbon. Little is known about how AMF colonise soil pore-space, and models of AMF-enhanced P-uptake are poorly validated. We used synchrotron X-ray computed tomography to visualize mycorrhizas in soil and synchrotron X-ray fluorescence/X-ray absorption near edge structure (XRF/XANES) elemental mapping for P, sulphur (S) and aluminium (Al) in combination with modelling. We found that AMF inoculation had a suppressive effect on colonisation by other soil fungi and identified differences in structure and growth rate between hyphae of AMF and nonmycorrhizal fungi. Our results showed that AMF co-locate with areas of high P and low Al, and preferentially associate with organic-type P species over Al-rich inorganic P. We discovered that AMF avoid Al-rich areas as a source of P. Sulphur-rich regions were found to be correlated with higher hyphal density and an increased organic-associated P-pool, whilst oxidized S-species were found close to AMF hyphae. Increased S oxidation close to AMF suggested the observed changes were microbiome-related. Our experimentally-validated model led to an estimate of P-uptake by AMF hyphae that is an order of magnitude lower than rates previously estimated - a result with significant implications for the modelling of plant-soil-AMF interactions.


Asunto(s)
Micorrizas , Hongos , Hifa , Fósforo , Raíces de Plantas/microbiología , Suelo/química , Microbiología del Suelo
5.
Angew Chem Int Ed Engl ; 60(18): 10032-10039, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33523530

RESUMEN

The introduction of structural defects in metal-organic frameworks (MOFs), often achieved through the fractional use of defective linkers, is emerging as a means to refine the properties of existing MOFs. These linkers, missing coordination fragments, create unsaturated framework nodes that may alter the properties of the MOF. A property-targeted utilization of this approach demands an understanding of the structure of the defect-engineered MOF. We demonstrate that full-field X-ray absorption near-edge structure computed tomography can help to improve our understanding. This was demonstrated by visualizing the chemical heterogeneity found in defect-engineered HKUST-1 MOF crystals. A non-uniform incorporation and zonation of the defective linker was discovered, leading to the presence of clusters of a second coordination polymer within HKUST-1. The former is suggested to be responsible, in part, for altered MOF properties; thereby, advocating for a spatio-chemically resolved characterization of MOFs.

6.
Angew Chem Int Ed Engl ; 60(35): 19144-19154, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34062043

RESUMEN

We investigated the material properties of Cremonese soundboards using a wide range of spectroscopic, microscopic, and chemical techniques. We found similar types of spruce in Cremonese soundboards as in modern instruments, but Cremonese spruces exhibit unnatural elemental compositions and oxidation patterns that suggest artificial manipulation. Combining analytical data and historical information, we may deduce the minerals being added and their potential functions-borax and metal sulfates for fungal suppression, table salt for moisture control, alum for molecular crosslinking, and potash or quicklime for alkaline treatment. The overall purpose may have been wood preservation or acoustic tuning. Hemicellulose fragmentation and altered cellulose nanostructures are observed in heavily treated Stradivari specimens, which show diminished second-harmonic generation signals. Guarneri's practice of crosslinking wood fibers via aluminum coordination may also affect mechanical and acoustic properties. Our data suggest that old masters undertook materials engineering experiments to produce soundboards with unique properties.

7.
New Phytol ; 225(4): 1476-1490, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31591727

RESUMEN

Rhizosphere soil has distinct physical and chemical properties from bulk soil. However, besides root-induced physical changes, chemical changes have not been extensively measured in situ on the pore scale. In this study, we couple structural information, previously obtained using synchrotron X-ray computed tomography (XCT), with synchrotron X-ray fluorescence microscopy (XRF) and X-ray absorption near-edge structure (XANES) to unravel chemical changes induced by plant roots. Our results suggest that iron (Fe) and sulfur (S) increase notably in the direct vicinity of the root via solubilization and microbial activity. XANES further shows that Fe is slightly reduced, S is increasingly transformed into sulfate (SO42- ) and phosphorus (P) is increasingly adsorbed to humic substances in this enrichment zone. In addition, the ferrihydrite fraction decreases drastically, suggesting the preferential dissolution and the formation of more stable Fe oxides. Additionally, the increased transformation of organic S to sulfate indicates that the microbial activity in this zone is increased. These changes in soil chemistry correspond to the soil compaction zone as previously measured via XCT. The fact that these changes are colocated near the root and the compaction zone suggests that decreased permeability as a result of soil structural changes acts as a barrier creating a zone with increased rhizosphere chemical interactions via surface-mediated processes, microbial activity and acidification.


Asunto(s)
Hierro/química , Fósforo/química , Raíces de Plantas/fisiología , Rizosfera , Suelo/química , Azufre/química , Hordeum , Microscopía Fluorescente/métodos , Sincrotrones , Tomografía Computarizada por Rayos X/métodos
8.
J Synchrotron Radiat ; 26(Pt 4): 1226-1237, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31274448

RESUMEN

Recent advances in segmented low-gain avalanche detectors (LGADs) make them promising for the position-sensitive detection of low-energy X-ray photons thanks to their internal gain. LGAD microstrip sensors fabricated by Fondazione Bruno Kessler have been investigated using X-rays with both charge-integrating and single-photon-counting readout chips developed at the Paul Scherrer Institut. In this work it is shown that the charge multiplication occurring in the sensor allows the detection of X-rays with improved signal-to-noise ratio in comparison with standard silicon sensors. The application in the tender X-ray energy range is demonstrated by the detection of the sulfur Kα and Kß lines (2.3 and 2.46 keV) in an energy-dispersive fluorescence spectrometer at the Swiss Light Source. Although further improvements in the segmentation and in the quantum efficiency at low energy are still necessary, this work paves the way for the development of single-photon-counting detectors in the soft X-ray energy range.

9.
J Am Chem Soc ; 140(43): 14289-14299, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30265527

RESUMEN

Calcium carbonate (CaCO3) is one of the most abundant biominerals that is prevalent in rocks and often used as a structural material in marine animals. Many of these natural CaCO3-based materials display excellent mechanical properties that are difficult to reproduce by man-made counterparts. This difficulty arises from the incomplete understanding of the influence of processing conditions on the structure and composition of CaCO3. To gain a better understanding of the evolution of the structure and composition of amorphous CaCO3 (ACC) particles during early stages, we introduce a new, organic solvent-free method that quenches this process with a high temporal resolution. We produce ACC particles inside small airborne drops that are formed with a microfluidic spray-dryer. These drops dry within 100 ms to 10 s and thereby arrest the formation of CaCO3 particles on that time scale. Using the microfluidic spray-dryer, we demonstrate that the amount of mobile water contained in ACC particles increases with increasing formation time and hence with increasing particle size. As a result of the higher concentration of mobile water, larger particles are less stable against temperature-induced solid-state crystallization and electron beam-induced decomposition than smaller counterparts. The amount of mobile water contained in ACC can be substantially reduced, and hence their kinetic stability against solid-state transformations increased, if certain organic additives, such as poly(acrylic acid) (PAA), are incorporated. These insights might open up new opportunities to fabricate biomimetic CaCO3-based materials with tunable structures and hence with properties that can be adapted to the needs of specific applications.

10.
J Synchrotron Radiat ; 25(Pt 1): 16-19, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29271745

RESUMEN

One of the remaining challenges for accurate photon diagnostics at X-ray free-electron lasers (FELs) is the shot-to-shot, non-destructive, high-resolution characterization of the FEL pulse spectrum at photon energies between 2 keV and 4 keV, the so-called tender X-ray range. Here, a spectrometer setup is reported, based on the von Hamos geometry and using elastic scattering as a fingerprint of the FEL-generated spectrum. It is capable of pulse-to-pulse measurement of the spectrum with an energy resolution (ΔE/E) of 10-4, within a bandwidth of 2%. The Tender X-ray Single-Shot Spectrometer (TXS) will grant to experimental scientists the freedom to measure the spectrum in a single-shot measurement, keeping the transmitted beam undisturbed. It will enable single-shot reconstructions for easier and faster data analysis.

11.
Proc Natl Acad Sci U S A ; 112(42): 12922-7, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26438842

RESUMEN

Diatomic ligands in hemoproteins and the way they bind to the active center are central to the protein's function. Using picosecond Fe K-edge X-ray absorption spectroscopy, we probe the NO-heme recombination kinetics with direct sensitivity to the Fe-NO binding after 532-nm photoexcitation of nitrosylmyoglobin (MbNO) in physiological solutions. The transients at 70 and 300 ps are identical, but they deviate from the difference between the static spectra of deoxymyoglobin and MbNO, showing the formation of an intermediate species. We propose the latter to be a six-coordinated domed species that is populated on a timescale of ∼ 200 ps by recombination with NO ligands. This work shows the feasibility of ultrafast pump-probe X-ray spectroscopic studies of proteins in physiological media, delivering insight into the electronic and geometric structure of the active center.


Asunto(s)
Mioglobina/metabolismo , Óxido Nítrico/metabolismo , Análisis Espectral/métodos , Cinética , Ligandos
12.
Angew Chem Int Ed Engl ; 56(45): 14031-14035, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28981203

RESUMEN

Fluid catalytic cracking is a chemical conversion process of industrial scale. This process, utilizing porous catalysts composed of clay and zeolite, converts heavy crude-oil fractions into transportation fuel and petrochemical feedstocks. Among other factors iron-rich reactor and feedstream impurities cause these catalyst particles to permanently deactivate. Herein, we report tomographic X-ray absorption spectroscopy measurements that reveal the presence of dissimilar iron impurities of specific localization within a single deactivated particle. Whereas the iron natural to clay in the composite seems to be unaffected by operation, exterior-facing and feedstream-introduced iron was found in two forms. Those being minute quantities of ferrous oxide, located near regions of increased porosity, and impurities rich in Fe3+ , preferentially located in the outer dense part of the particle and suggested to contribute to the formation of an isolating amorphous silica alumina envelope.

13.
Biophys J ; 110(6): 1304-11, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-27028640

RESUMEN

The biological influence of radiation on living matter has been studied for years; however, several questions about the detailed mechanism of radiation damage formation remain largely unanswered. Among all biomolecules exposed to radiation, DNA plays an important role because any damage to its molecular structure can affect the whole cell and may lead to chromosomal rearrangements resulting in genomic instability or cell death. To identify and characterize damage induced in the DNA sugar-phosphate backbone, in this work we performed x-ray absorption spectroscopy at the P K-edge on DNA irradiated with either UVA light or protons. By combining the experimental results with theoretical calculations, we were able to establish the types and relative ratio of lesions produced by both UVA and protons around the phosphorus atoms in DNA.


Asunto(s)
Daño del ADN , ADN/efectos de la radiación , Espectroscopía de Absorción de Rayos X/métodos , Animales , Bovinos , Protones , Rayos Ultravioleta
14.
Opt Express ; 22(14): 16676-85, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-25090486

RESUMEN

A nano-focusing module based on two linear Fresnel zone plates is presented. The zone plates are designed to generate a kinoform phase profile in tilted geometry, thus overcoming the efficiency limitations of binary diffractive structures. Adjustment of the tilt angle enables tuning of the setup for optimal efficiency over a wide range of photon energies, ranging from 5 to 20 keV. Diffraction efficiency of more than 50% was measured for the full module at 8 keV photon energy. A diffraction limited spot size of 100 nm was verified by ptychographic reconstruction for a lens module with a large entrance aperture of 440 µm × 400 µm.

15.
Environ Sci Technol ; 48(3): 1467-74, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24451034

RESUMEN

Use of depleted uranium (DU) munitions has resulted in contamination of the near-surface environment with penetrator residues. Uncertainty in the long-term environmental fate of particles produced by impact of DU penetrators with hard targets is a specific concern. In this study DU particles produced in this way and exposed to the surface terrestrial environment for longer than 30 years at a U.K. firing range were characterized using synchrotron X-ray chemical imaging. Two sites were sampled: a surface soil and a disposal area for DU-contaminated wood, and the U speciation was different between the two areas. Surface soil particles showed little extent of alteration, with U speciated as oxides U3O7 and U3O8. Uranium oxidation state and crystalline phase mapping revealed these oxides occur as separate particles, reflecting heterogeneous formation conditions. Particles recovered from the disposal area were substantially weathered, and U(VI) phosphate phases such as meta-ankoleite (K(UO2)(PO4) · 3H2O) were dominant. Chemical imaging revealed domains of contrasting U oxidation state linked to the presence of both U3O7 and meta-ankoleite, indicating growth of a particle alteration layer. This study demonstrates that substantial alteration of DU residues can occur, which directly influences the health and environmental hazards posed by this contamination.


Asunto(s)
Armas Nucleares , Monitoreo de Radiación/métodos , Contaminantes Radiactivos del Suelo/análisis , Compuestos de Uranio/análisis , Uranio/análisis , Microanálisis por Sonda Electrónica , Humanos , Microscopía Electrónica de Rastreo , Oxidación-Reducción , Óxidos/análisis , Suelo/química , Contaminantes Radiactivos del Suelo/química , Espectrometría por Rayos X , Sincrotrones , Reino Unido , Uranio/química , Compuestos de Uranio/química
16.
Nat Commun ; 15(1): 3067, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594282

RESUMEN

Co-based catalysts are promising candidates to replace Ir/Ru-based oxides for oxygen evolution reaction (OER) catalysis in an acidic environment. However, both the reaction mechanism and the active species under acidic conditions remain unclear. In this study, by combining surface-sensitive soft X-ray absorption spectroscopy characterization with electrochemical analysis, we discover that the acidic OER activity of Co-based catalysts are determined by their surface oxidation/spin state. Surfaces composed of only high-spin CoII are found to be not active due to their unfavorable water dissociation to form CoIII-OH species. By contrast, the presence of low-spin CoIII is essential, as it promotes surface reconstruction of Co oxides and, hence, OER catalysis. The correlation between OER activity and Co oxidation/spin state signifies a breakthrough in defining the structure-activity relationship of Co-based catalysts for acidic OER, though, interestingly, such a relationship does not hold in alkaline and neutral environments. These findings not only help to design efficient acidic OER catalysts, but also deepen the understanding of the reaction mechanism.

17.
Anal Chem ; 85(21): 10107-16, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23957530

RESUMEN

In recent years, chemical imaging was prognosticated to become one of the key analytical applications for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). However, moderate spatial resolution and the associated measurement time required for a larger sampling area, have restricted this versatile, high sensitivity technique from being routinely used in two-dimensional chemical imaging. This work describes the development and investigation of a low dispersion sample chamber (tube cell), which allows improvement of the imaging capabilities by reduction of the single LA shot duration to 30 ms (full width at 1% maximum). The new tube cell is based on a constant laminar flow and a well-controlled delivery of the laser-ablated aerosol into the transport system, leading to minimized tailing of the aerosol washout and helping to separate the signals even at repetition rates as high as 20-30 Hz. To demonstrate the improved imaging capabilities, microstructured metallic thin film patterns were analyzed at a spatial resolution of a few micrometers. The LA-ICP-MS results obtained were comparable to Synchrotron-based micro-X-ray fluorescence (SR-microXRF). The suitability of the newly designed cell for multielement acquisitions was demonstrated using a simultaneous ICP-Mattauch-Herzog-MS. Finally, the novel laser ablation cell was applied to image the distribution of a metal-tagged biomarker in a thin section of breast cancer tissue. This application demonstrates that the technique is able to produce subcellular (~1 µm) spatial resolution, which is crucial for morphological assessment in cancer diagnostics.


Asunto(s)
Terapia por Láser , Espectrometría de Masas/métodos , Neoplasias de la Mama/patología , Femenino , Humanos , Rayos Láser
18.
J Synchrotron Radiat ; 20(Pt 1): 197-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23254675

RESUMEN

Uranium L(III)-edge X-ray absorption spectroscopy is often used to probe the oxidation state and coordination of uranium in environmental samples, and micrometre-sized beams can be used to spatially map the distribution of uranium relative to other elements. Here a variety of uranium-containing environmental samples are analyzed at both microbeam and larger beam sizes to determine whether reoxidation of U(IV) occurred. Monomeric U(IV), a recently discovered product of U(VI) reduction by microbes and certain iron-bearing minerals at uranium-contaminated field sites, was found to be reoxidized during microbeam (3 µm × 2 µm) analysis of biomass and sediments containing the species but not at larger beam sizes. Thus, care must be taken when using X-ray microprobes to analyze samples containing monomeric U(IV).


Asunto(s)
Uranio/química , Biodegradación Ambiental , Biomasa , Sedimentos Geológicos/química , Oxidación-Reducción , Shewanella/metabolismo , Espectroscopía de Absorción de Rayos X
19.
Environ Sci Process Impacts ; 25(7): 1213-1223, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37335293

RESUMEN

For the first time, µ-X-ray fluorescence (µ-XRF) mapping combined with fluorine K-edge µ-X-ray absorption near-edge structure (µ-XANES) spectroscopy was applied to depict per- and polyfluoroalkyl substance (PFAS) contamination and inorganic fluoride in sample concentrations down to 100 µg kg-1 fluoride. To demonstrate the matrix tolerance of the method, several PFAS contaminated soil and sludge samples as well as selected consumer product samples (textiles, food contact paper and permanent baking sheets) were investigated. µ-XRF mapping allows for a unique element-specific visualization at the sample surface and enables localization of fluorine containing compounds to a depth of 1 µm. Manually selected fluorine rich spots were subsequently analyzed via fluorine K-edge µ-XANES spectroscopy. To support spectral interpretation with respect to inorganic and organic chemical distribution and compound class determination, linear combination (LC) fitting was applied to all recorded µ-XANES spectra. Complementarily, solvent extracts of all samples were target-analyzed via LC-MS/MS spectrometry. The detected PFAS sum values range from 20 to 1136 µg kg-1 dry weight (dw). All environmentally exposed samples revealed a higher concentration of PFAS with a chain length > C8 (e.g. 580 µg kg-1 dw PFOS for Soil1), whereas the consumer product samples showed a more uniform distribution with regard to chain lengths from C4 to C8. Independent of quantified PFAS amounts via target analysis, µ-XRF mapping combined with µ-XANES spectroscopy was successfully applied to detect both point-specific concentration maxima and evenly distributed surface coatings of fluorinated organic contaminants in the corresponding samples.


Asunto(s)
Flúor , Fluorocarburos , Espectroscopía de Absorción de Rayos X , Rayos X , Fluoruros , Cromatografía Liquida , Espectrometría de Masas en Tándem
20.
Chem Mater ; 35(23): 10060-10069, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38107192

RESUMEN

This work provides insight into the local structure of Na in MgO-based CO2 sorbents that are promoted with NaNO3. To this end, we use X-ray absorption spectroscopy (XAS) at the Na K-edge to interrogate the local structure of Na during the CO2 capture (MgO + CO2 ↔ MgCO3). The analysis of Na K-edge XAS data shows that the local environment of Na is altered upon MgO carbonation when compared to that of NaNO3 in the as-prepared sorbent. We attribute the changes observed in the carbonated sorbent to an alteration in the local structure of Na at the NaNO3/MgCO3 interfaces and/or in the vicinity of [Mg2+···CO32-] ionic pairs that are trapped in the cooled NaNO3 melt. The changes observed are reversible, i.e., the local environment of NaNO3 was restored after a regeneration treatment to decompose MgCO3 to MgO. The ex situ Na K-edge XAS experiments were complemented by ex situ magic-angle spinning 23Na nuclear magnetic resonance (MAS 23Na NMR), Mg K-edge XAS and X-ray powder diffraction (XRD). These additional experiments support our interpretation of the Na K-edge XAS data. Furthermore, we develop in situ Na (and Mg) K-edge XAS experiments during the carbonation of the sorbent (NaNO3 is molten under the conditions of the in situ experiments). These in situ Na K-edge XANES spectra of molten NaNO3 open new opportunities to investigate the atomic scale structure of CO2 sorbents modified with Na-based molten salts by using XAS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA