Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
EMBO J ; 33(12): 1365-82, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24837709

RESUMEN

Tumour cells sustain their high proliferation rate through metabolic reprogramming, whereby cellular metabolism shifts from oxidative phosphorylation to aerobic glycolysis, even under normal oxygen levels. Hypoxia-inducible factor 1A (HIF1A) is a major regulator of this process, but its activation under normoxic conditions, termed pseudohypoxia, is not well documented. Here, using an integrative approach combining the first genome-wide mapping of chromatin binding for an endocytic adaptor, ARRB1, both in vitro and in vivo with gene expression profiling, we demonstrate that nuclear ARRB1 contributes to this metabolic shift in prostate cancer cells via regulation of HIF1A transcriptional activity under normoxic conditions through regulation of succinate dehydrogenase A (SDHA) and fumarate hydratase (FH) expression. ARRB1-induced pseudohypoxia may facilitate adaptation of cancer cells to growth in the harsh conditions that are frequently encountered within solid tumours. Our study is the first example of an endocytic adaptor protein regulating metabolic pathways. It implicates ARRB1 as a potential tumour promoter in prostate cancer and highlights the importance of metabolic alterations in prostate cancer.


Asunto(s)
Arrestinas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Redes y Vías Metabólicas/fisiología , Modelos Biológicos , Neoplasias de la Próstata/fisiopatología , Inmunoprecipitación de Cromatina , Técnica del Anticuerpo Fluorescente , Fumarato Hidratasa/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Perfilación de la Expresión Génica , Humanos , Immunoblotting , Inmunohistoquímica , Espectroscopía de Resonancia Magnética , Masculino , Metabolómica , Neoplasias de la Próstata/metabolismo , Interferencia de ARN , Succinato Deshidrogenasa/metabolismo , Análisis de Matrices Tisulares , beta-Arrestina 1 , beta-Arrestinas
2.
EMBO J ; 30(13): 2719-33, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21602788

RESUMEN

The androgen receptor (AR) is a key regulator of prostate growth and the principal drug target for the treatment of prostate cancer. Previous studies have mapped AR targets and identified some candidates which may contribute to cancer progression, but did not characterize AR biology in an integrated manner. In this study, we took an interdisciplinary approach, integrating detailed genomic studies with metabolomic profiling and identify an anabolic transcriptional network involving AR as the core regulator. Restricting flux through anabolic pathways is an attractive approach to deprive tumours of the building blocks needed to sustain tumour growth. Therefore, we searched for targets of the AR that may contribute to these anabolic processes and could be amenable to therapeutic intervention by virtue of differential expression in prostate tumours. This highlighted calcium/calmodulin-dependent protein kinase kinase 2, which we show is overexpressed in prostate cancer and regulates cancer cell growth via its unexpected role as a hormone-dependent modulator of anabolic metabolism. In conclusion, it is possible to progress from transcriptional studies to a promising therapeutic target by taking an unbiased interdisciplinary approach.


Asunto(s)
Carcinoma/genética , Carcinoma/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/fisiología , Animales , Secuencia de Bases , Sitios de Unión/genética , Vías Biosintéticas/genética , Carcinoma/patología , Línea Celular Tumoral , Proliferación Celular , Análisis por Conglomerados , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Metabolismo/genética , Metabolismo/fisiología , Ratones , Modelos Biológicos , Neoplasias de la Próstata/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Elementos de Respuesta/genética , Trasplante Heterólogo
3.
J Am Chem Soc ; 133(30): 11795-801, 2011 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-21692446

RESUMEN

Dynamic nuclear polarization (DNP) of (13)C-labeled metabolic substrates in vitro and their subsequent intravenous administration allow both the location of the hyperpolarized substrate and the dynamics of its subsequent conversion into other metabolic products to be detected in vivo. We report here the hyperpolarization of [1-(13)C]-ascorbic acid (AA) and [1-(13)C]-dehydroascorbic acid (DHA), the reduced and oxidized forms of vitamin C, respectively, and evaluate their performance as probes of tumor redox state. Solution-state polarization of 10.5 ± 1.3% was achieved for both forms at pH 3.2, whereas at pH 7.0, [1-(13)C]-AA retained polarization of 5.1 ± 0.6% and [1-(13)C]-DHA retained 8.2 ± 1.1%. The spin-lattice relaxation times (T(1)'s) for these labeled nuclei are long at 9.4 T: 15.9 ± 0.7 s for AA and 20.5 ± 0.9 s for DHA. Extracellular oxidation of [1-(13)C]-AA and intracellular reduction of [1-(13)C]-DHA were observed in suspensions of murine lymphoma cells. The spontaneous reaction of DHA with the cellular antioxidant glutathione was monitored in vitro and was approximately 100-fold lower than the rate observed in cell suspensions, indicating enzymatic involvement in the intracellular reduction. [1-(13)C]-DHA reduction was also detected in lymphoma tumors in vivo. In contrast, no detectable oxidation of [1-(13)C]-AA was measured in the same tumors, consistent with the notion that tumors maintain a reduced microenvironment. This study demonstrates that hyperpolarized (13)C-labeled vitamin C could be used as a noninvasive biomarker of redox status in vivo, which has the potential to translate to the clinic.


Asunto(s)
Ácido Ascórbico/química , Estructura Molecular , Oxidación-Reducción , Estereoisomerismo
4.
Bioconjug Chem ; 21(5): 884-91, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20402461

RESUMEN

The induction of apoptosis is frequently accompanied by the exposure of phosphatidylserine (PS) on the cell surface, which has been detected using radionuclide and fluorescently labeled derivatives of the PS-binding protein, Annexin V. The fluorescently labeled protein has been used extensively in vitro as a diagnostic reagent for detecting cell death, and radionuclide-labeled derivatives have undergone clinical trials for detecting tumor cell death in vivo following treatment. We show here that the C2A domain of Synaptotagmin-I, which had been fluorescently labeled at a single cysteine residue introduced by site-directed mutagenesis, detected the same levels of cell death as a similarly labeled Annexin-V derivative, in drug-treated murine lymphoma and human breast cancer cell lines in vitro. However, the C2A derivative showed significantly less binding to viable cells and, as a consequence, up to 4-fold more specific binding to apoptotic and necrotic cells when compared with Annexin-V. C2A offers a potential route for the development of a new generation of more specific imaging probes for the detection of tumor cell death in the clinic.


Asunto(s)
Anexina A5/química , Muerte Celular , Sinaptotagmina I/química , Animales , Anexina A5/metabolismo , Neoplasias de la Mama/diagnóstico , Línea Celular Tumoral , Femenino , Colorantes Fluorescentes/química , Humanos , Linfoma/diagnóstico , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Sinaptotagmina I/metabolismo
5.
Int J Exp Pathol ; 89(4): 232-40, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18422600

RESUMEN

(Pre)neoplastic lesions in livers of rats induced by diethylnitrosamine are characterized by elevated activity of the first irreversible enzyme of the oxidative branch of the pentose phosphate pathway (PPP), glucose-6-phosphate dehydrogenase (G6PD), for production of NADPH. In the present study, the activity of G6PD, and the other NADPH-producing enzymes, phosphogluconate dehydrogenase (PGD), isocitrate dehydrogenase (ICD) and malate dehydrogenase (MD) was investigated in (pre)neoplastic lesions by metabolic mapping. Transketolase (TKT), the reversible rate-limiting enzyme of the non-oxidative branch of the PPP, mainly responsible for ribose production, was studied as well. Activity of G6PD in (pre)neoplastic lesions was highest, whereas activity of PGD and ICD was only 10% and of MD 5% of G6PD activity, respectively. Glucose-6-phosphate dehydrogenase activity in (pre)neoplastic lesions was increased 25 times compared with extralesional parenchyma, which was also the highest activity increase of the four NADPH-producing dehydrogenases. Transketolase activity was 0.1% of G6PD activity in lesions and was increased 2.5-fold as compared with normal parenchyma. Transketolase activity was localized by electron microscopy exclusively at membranes of granular endoplasmic reticulum in rat hepatoma cells where G6PD activity is localized as well. It is concluded that NADPH in (pre)neoplastic lesions is mainly produced by G6PD, whereas elevated TKT activity in (pre)neoplastic lesions is responsible for ribose formation with concomitant energy supply by glycolysis. The similar localization of G6PD and TKT activity suggests the channelling of substrates at this site to optimize the efficiency of NADPH and ribose synthesis.


Asunto(s)
Neoplasias Hepáticas/enzimología , Hígado/enzimología , Vía de Pentosa Fosfato , Lesiones Precancerosas/enzimología , Animales , Línea Celular Tumoral , Dietilnitrosamina , Activación Enzimática , Glucosafosfato Deshidrogenasa/metabolismo , Procesamiento de Imagen Asistido por Computador , Isocitrato Deshidrogenasa/metabolismo , Malato Deshidrogenasa/metabolismo , Masculino , Microscopía Electrónica , Modelos Animales , NADP/metabolismo , Oxidación-Reducción , Fosfogluconato Deshidrogenasa/metabolismo , Ratas , Ratas Wistar , Ribosa/metabolismo , Transcetolasa/metabolismo
6.
J Histochem Cytochem ; 54(2): 191-9, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16116031

RESUMEN

Metabolic mapping of enzyme activities (enzyme histochemistry) is an important tool to understand (patho)physiological functions of enzymes. A new enzyme histochemical method has been developed to detect transketolase activity in situ in various rat tissues and its ultrastructural localization in individual cells. In situ detection of transketolase is important because this multifunctional enzyme has been related with diseases such as cancer, diabetes, Alzheimer's disease, and Wernicke-Korsakoff's syndrome. The proposed method is based on the tetrazolium salt method applied to unfixed cryostat sections in the presence of polyvinyl alcohol. The method appeared to be specific for transketolase activity when the proper control reaction is performed and showed a linear increase of the amount of final reaction product with incubation time. Transketolase activity was studied in liver, small intestine, trachea, tongue, kidney, adrenal gland, and eye. Activity was found in liver parenchyma, epithelium of small intestine, trachea, tongue, proximal tubules of kidney and cornea, and ganglion cells in medulla of adrenal gland. To demonstrate transketolase activity ultrastructurally in liver parenchymal cells, the cupper iron method was used. It was shown that transketolase activity was present in peroxisomes and at membranes of granular endoplasmic reticulum. This ultrastructural localization is similar to that of glucose-6-phosphate dehydrogenase activity, suggesting activity of the pentose phosphate pathway at these sites. It is concluded that the method developed for in situ localization of transketolase activity for light and electron microscopy is specific and allows further investigation of the role of transketolase in (proliferation of) cancer cells and other pathophysiological processes.


Asunto(s)
Células Epiteliales/enzimología , Hígado/enzimología , Transcetolasa/metabolismo , Animales , Córnea/enzimología , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/ultraestructura , Intestino Delgado/enzimología , Membranas Intracelulares/enzimología , Túbulos Renales Proximales/enzimología , Hígado/ultraestructura , Masculino , Neuronas/metabolismo , Especificidad de Órganos , Peroxisomas/enzimología , Ratas , Ratas Wistar , Lengua/enzimología , Tráquea/enzimología
7.
Cancer Res ; 75(19): 4109-18, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26249175

RESUMEN

Carbonic anhydrase buffers tissue pH by catalyzing the rapid interconversion of carbon dioxide (CO2) and bicarbonate (HCO3 (-)). We assessed the functional activity of CAIX in two colorectal tumor models, expressing different levels of the enzyme, by measuring the rate of exchange of hyperpolarized (13)C label between bicarbonate (H(13)CO3(-)) and carbon dioxide ((13)CO2), following injection of hyperpolarized H(13)CO3(-), using (13)C-magnetic resonance spectroscopy ((13)C-MRS) magnetization transfer measurements. (31)P-MRS measurements of the chemical shift of the pH probe, 3-aminopropylphosphonate, and (13)C-MRS measurements of the H(13)CO3(-)/(13)CO2 peak intensity ratio showed that CAIX overexpression lowered extracellular pH in these tumors. However, the (13)C measurements overestimated pH due to incomplete equilibration of the hyperpolarized (13)C label between the H(13)CO3(-) and (13)CO2 pools. Paradoxically, tumors overexpressing CAIX showed lower enzyme activity using magnetization transfer measurements, which can be explained by the more acidic extracellular pH in these tumors and the decreased activity of the enzyme at low pH. This explanation was confirmed by administration of bicarbonate in the drinking water, which elevated tumor extracellular pH and restored enzyme activity to control levels. These results suggest that CAIX expression is increased in hypoxia to compensate for the decrease in its activity produced by a low extracellular pH and supports the hypothesis that a major function of CAIX is to lower the extracellular pH.


Asunto(s)
Antígenos de Neoplasias/fisiología , Anhidrasas Carbónicas/fisiología , Neoplasias Colorrectales/metabolismo , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Proteínas de Neoplasias/fisiología , Animales , Antígenos de Neoplasias/análisis , Antígenos de Neoplasias/genética , Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análisis , Anhidrasa Carbónica IX , Anhidrasas Carbónicas/análisis , Anhidrasas Carbónicas/genética , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas de Neoplasias/análisis , Proteínas Recombinantes de Fusión/análisis , Microambiente Tumoral
8.
J Biophotonics ; 7(11-12): 906-13, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24343869

RESUMEN

Coherent anti-Stokes Raman scattering (CARS) is becoming an established tool for label-free multi-photon imaging based on molecule specific vibrations in the sample. The technique has proven to be particularly useful for imaging lipids, which are abundant in cells and tissues, including cytoplasmic lipid droplets (LD), which are recognized as dynamic organelles involved in many cellular functions. The increase in the number of lipid droplets in cells undergoing cell proliferation is a common feature in many neoplastic processes [1] and an increase in LD number also appears to be an early marker of drug-induced cell stress and subsequent apoptosis [3]. In this paper, a CARS-based label-free method is presented to monitor the increase in LD content in HCT116 colon tumour cells treated with the chemotherapeutic drugs Etoposide, Camptothecin and the protein kinase inhibitor Staurosporine. Using CARS, LDs can easily be distinguished from other cell components without the application of fluorescent dyes and provides a label-free non-invasive drug screening assay that could be used not only with cells and tissues ex vivo but potentially also in vivo.


Asunto(s)
Ensayos de Selección de Medicamentos Antitumorales/métodos , Gotas Lipídicas/química , Neoplasias/metabolismo , Espectrometría Raman/métodos , Algoritmos , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Apoptosis , Camptotecina/administración & dosificación , Línea Celular Tumoral , Proliferación Celular , Citoplasma/metabolismo , Etopósido/administración & dosificación , Colorantes Fluorescentes/química , Células HCT116 , Humanos , Lípidos/química , Microscopía Fluorescente/métodos , Estaurosporina/administración & dosificación
9.
J Nucl Med ; 55(7): 1144-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24777291

RESUMEN

UNLABELLED: Tumors are often characterized by high levels of de novo fatty acid synthesis. The kinetics of acetate incorporation into tricarboxylic acid cycle intermediates and into lipids suggest that detection of tumors with [1-(11)C]acetate PET could be improved by imaging at later time points. METHODS: The uptake and metabolism of [1-(11)C], [1-(13)C], and [1-(14)C]acetate were measured in mouse prostate and lung cancer models to investigate the time course of (11)C label incorporation into tumor metabolites. RESULTS: Radioactivity in the lipid fraction, as compared with the aqueous fraction, in extracts of C4-2B human prostate xenografts peaked at 90 min after [1-(14)C]acetate injection, which coincided with peak (13)C label incorporation into the fatty acids palmitate and stearate. Contrast between the tumor and tissues, such as blood and muscle, increased in PET images acquired over a period of 120 min after [1-(11)C]acetate injection, and Patlak plots were linear from 17.5 min after injection. Similar results were obtained in a genetically engineered K-ras(G12D); p53(null) lung cancer model, in which the mean tumor-to-lung ratio at 90 min after [1-(14)C]acetate injection was 4.4-fold higher than at 15 min. CONCLUSION: These findings suggest that when imaging de novo fatty acid synthesis with [1-(11)C]acetate it is preferable to measure uptake at later time points, when the effects of perfusion and (11)C incorporation into tricarboxylic acid cycle intermediates and bicarbonate are declining. The data presented here suggest that future clinical PET scans of tumors should be acquired later than 30 min, when tracer accumulation due to de novo fatty acid synthesis prevails.


Asunto(s)
Acetatos , Ácidos Grasos/biosíntesis , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Animales , Radioisótopos de Carbono , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Neoplasias de la Próstata/metabolismo , Factores de Tiempo , Tomografía Computarizada por Rayos X
10.
EMBO Mol Med ; 6(5): 651-61, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24737870

RESUMEN

Castrate-resistant prostate cancer (CRPC) is poorly characterized and heterogeneous and while the androgen receptor (AR) is of singular importance, other factors such as c-Myc and the E2F family also play a role in later stage disease. HES6 is a transcription co-factor associated with stem cell characteristics in neural tissue. Here we show that HES6 is up-regulated in aggressive human prostate cancer and drives castration-resistant tumour growth in the absence of ligand binding by enhancing the transcriptional activity of the AR, which is preferentially directed to a regulatory network enriched for transcription factors such as E2F1. In the clinical setting, we have uncovered a HES6-associated signature that predicts poor outcome in prostate cancer, which can be pharmacologically targeted by inhibition of PLK1 with restoration of sensitivity to castration. We have therefore shown for the first time the critical role of HES6 in the development of CRPC and identified its potential in patient-specific therapeutic strategies.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factor de Transcripción E2F1/metabolismo , Regulación de la Expresión Génica , Neoplasias de la Próstata/fisiopatología , Receptores Androgénicos/metabolismo , Proteínas Represoras/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Ciclo Celular/metabolismo , Modelos Animales de Enfermedad , Factor de Transcripción E2F1/genética , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Neoplasias de la Próstata/patología , Proteínas Represoras/genética , Análisis de Secuencia de ADN
11.
Metabolomics ; 6(2): 229-237, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20445757

RESUMEN

Cell differentiation is an orderly process that begins with modifications in gene expression. This process is regulated by the acetylation state of histones. Removal of the acetyl groups of histones by specific enzymes (histone deacetylases, HDAC) usually downregulates expression of genes that can cause cells to differentiate, and pharmacological inhibitors of these enzymes have been shown to induce differentiation in several colon cancer cell lines. Butyrate at high (mM) concentration is both a precursor for acetyl-CoA and a known HDAC inhibitor that induces cell differentiation in colon cells. The dual role of butyrate raises the question whether its effects on HT29 cell differentiation are due to butyrate metabolism or to its HDAC inhibitor activity. To distinguish between these two possibilities, we used a tracer-based metabolomics approach to compare the metabolic changes induced by two different types of HDAC inhibitors (butyrate and the non-metabolic agent trichostatin A) and those induced by other acetyl-CoA precursors that do not inhibit HDAC (caprylic and capric acids). [1,2-(13)C(2)]-d-glucose was used as a tracer and its redistribution among metabolic intermediates was measured to estimate the contribution of glycolysis, the pentose phosphate pathway and the Krebs cycle to the metabolic profile of HT29 cells under the different treatments. The results demonstrate that both HDAC inhibitors (trichostatin A and butyrate) induce a common metabolic profile that is associated with histone deacetylase inhibition and differentiation of HT29 cells whereas the metabolic effects of acetyl-CoA precursors are different from those of butyrate. The experimental findings support the concept of crosstalk between metabolic and cell signalling events, and provide an experimental approach for the rational design of new combined therapies that exploit the potential synergism between metabolic adaptation and cell differentiation processes through modification of HDAC activity.

12.
J Biol Chem ; 278(31): 28395-402, 2003 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12750369

RESUMEN

Stable isotope-based dynamic metabolic profiling is applied in this paper to elucidate the mechanism by which butyrate induces cell differentiation in HT29 cells. We utilized butyrate-sensitive (HT29) cells incubated with [1,2-13C2]glucose or [1,2-13C2]butyrate as single tracers to observe the changes in metabolic fluxes in these cells. In HT29 cells, increasing concentrations of butyrate inhibited glucose uptake, glucose oxidation, and nucleic acid ribose synthesis in a dose-dependent fashion. Glucose carbon utilization for de novo fatty acid synthesis and tricarboxylic acid cycle flux was replaced by butyrate. We also demonstrated that these changes are not present in butyrate-resistant pancreatic adenocarcinoma MIA cells. The results suggest that the mechanism by which colon carcinoma cells acquire a differentiated phenotype is through a replacement of glucose for butyrate as the main carbon source for macromolecule biosynthesis and energy production. This provides a better understanding of cell differentiation through metabolic adaptive changes in response to butyrate in HT29 cells, demonstrating that variations in metabolic pathway substrate flow are powerful regulators of tumor cell proliferation and differentiation.


Asunto(s)
Adenocarcinoma/patología , Butiratos/farmacología , Diferenciación Celular/efectos de los fármacos , Neoplasias del Colon/patología , Acetilcoenzima A/metabolismo , Butiratos/metabolismo , Isótopos de Carbono , División Celular/efectos de los fármacos , Glucosa/metabolismo , Glucólisis , Células HT29 , Humanos , Malonil Coenzima A/metabolismo , Oxidación-Reducción , Neoplasias Pancreáticas/patología , Vía de Pentosa Fosfato
13.
J Biol Chem ; 277(48): 46408-14, 2002 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-12351627

RESUMEN

The fermented extract of wheat germ, trade name Avemar, is a complex mixture of biologically active molecules with potent anti-metastatic activities in various human malignancies. Here we report the effect of Avemar on Jurkat leukemia cell viability, proliferation, cell cycle distribution, apoptosis, and the activity of key glycolytic/pentose cycle enzymes that control carbon flow for nucleic acid synthesis. The cytotoxic IC(50) concentration of Avemar for Jurkat tumor cells is 0.2 mg/ml, and increasing doses of the crude powder inhibit Jurkat cell proliferation in a dose-dependent fashion. At concentrations higher than 0.2 mg/ml, Avemar inhibits cell growth by more than 50% (72 h of incubation), which is preceded by the appearance of a sub-G(1) peak on flow histograms at 48 h. Laser scanning cytometry of propidium iodide- and annexin V-stained cells indicated that the growth-inhibiting effect of Avemar was consistent with a strong induction of apoptosis. Inhibition by benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone of apoptosis but increased proteolysis of poly(ADP-ribose) indicate caspases mediate the cellular effects of Avemar. Activities of glucose-6-phosphate dehydrogenase and transketolase were inhibited in a dose-dependent fashion, which correlated with decreased (13)C incorporation and pentose cycle substrate flow into RNA ribose. This decrease in pentose cycle enzyme activities and carbon flow toward nucleic acid precursor synthesis provide the mechanistic understanding of the cell growth-controlling and apoptosis-inducing effects of fermented wheat germ. Avemar exhibits about a 50-fold higher IC(50) (10.02 mg/ml) for peripheral blood lymphocytes to induce a biological response, which provides the broad therapeutic window for this supplemental cancer treatment modality with no toxic effects.


Asunto(s)
Apoptosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Glucólisis , Leucemia de Células T/patología , Vía de Pentosa Fosfato , Extractos Vegetales/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Triticum/embriología , Isótopos de Carbono , Activación Enzimática , Fermentación , Cromatografía de Gases y Espectrometría de Masas , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Glucosafosfato Deshidrogenasa/metabolismo , Hexoquinasa/antagonistas & inhibidores , Hexoquinasa/metabolismo , Humanos , Células Jurkat , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/metabolismo , Lactatos/metabolismo , Leucemia de Células T/enzimología , Transcetolasa/antagonistas & inhibidores , Transcetolasa/metabolismo
14.
Mol Biol Rep ; 29(1-2): 7-12, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12241078

RESUMEN

Metabolic control analysis predicts that effects on tumor growth are likely to be obtained with lower concentrations of drug, if an enzyme with a high control coefficient on tumor growth is being inhibited. Here we measure glucose-6-phosphate dehydrogenase (G6PDH) control coefficient on in vivo tumor growth using mice bearing Ehrlich ascites tumor cells. We used dehydroepiandrosterone-sulphate (DHEA-S), an uncompetitive inhibitor of this enzyme and the in situ cytochemical method to measure the enzyme activity changes that accompany changes on tumor cell growth. This method ensures that the enzyme activity determined is the one existing in the in situ conditions and enables computing a control coefficient in in situ conditions. From the data obtained on tumor cell number and the in situ enzyme activities in absence and presence of DHEA-S, a control coefficient of 0.41 for G6PDH on tumor cell growth was computed. This value is approximately the half of the transketolase control coefficient value of 0.9 previously reported. Moreover, the use of in situ methods to assess enzyme activities, applied for first time for the calculation of control coefficients in this study, opens new avenues to the use of uncompetitive inhibitors for the measurement of in situ control coefficients.


Asunto(s)
Carcinoma de Ehrlich/metabolismo , Carcinoma de Ehrlich/patología , Sulfato de Deshidroepiandrosterona/farmacología , Inhibidores Enzimáticos/farmacología , Glucosafosfato Deshidrogenasa/metabolismo , Ribosa/biosíntesis , Animales , Carcinoma de Ehrlich/enzimología , División Celular , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Matemática , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Transcetolasa/antagonistas & inhibidores , Transcetolasa/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA