RESUMEN
Proteomic studies using postmortem human brain tissue samples have yielded robust assessments of the aging and neurodegenerative disease(s) proteomes. While these analyses provide lists of molecular alterations in human conditions, like Alzheimer's disease (AD), identifying individual proteins that affect biological processes remains a challenge. To complicate matters, protein targets may be highly understudied and have limited information on their function. To address these hurdles, we sought to establish a blueprint to aid selection and functional validation of targets from proteomic datasets. A cross-platform pipeline was engineered to focus on synaptic processes in the entorhinal cortex (EC) of human patients, including controls, preclinical AD, and AD cases. Label-free quantification mass spectrometry (MS) data (n = 2260 proteins) was generated on synaptosome fractionated tissue from Brodmann area 28 (BA28; n = 58 samples). In parallel, dendritic spine density and morphology was measured in the same individuals. Weighted gene co-expression network analysis was used to construct a network of protein co-expression modules that were correlated with dendritic spine metrics. Module-trait correlations were used to guide unbiased selection of Twinfilin-2 (TWF2), which was the top hub protein of a module that positively correlated with thin spine length. Using CRISPR-dCas9 activation strategies, we demonstrated that boosting endogenous TWF2 protein levels in primary hippocampal neurons increased thin spine length, thus providing experimental validation for the human network analysis. Collectively, this study describes alterations in dendritic spine density and morphology as well as synaptic proteins and phosphorylated tau from the entorhinal cortex of preclinical and advanced stage AD patients.SIGNIFICANCE STATEMENT Proteomic studies can yield vast lists of molecules that are altered under various experimental or disease conditions. Here, we provide a blueprint to facilitate mechanistic validation of protein targets from human brain proteomic datasets. We conducted a proteomic analysis of human entorhinal cortex (EC) samples spanning cognitively normal and Alzheimer's disease (AD) cases with a comparison of dendritic spine morphology in the same samples. Network integration of proteomics with dendritic spine measurements allowed for unbiased discovery of Twinfilin-2 (TWF2) as a regulator of dendritic spine length. A proof-of-concept experiment in cultured neurons demonstrated that altering Twinfilin-2 protein level induced corresponding changes in dendritic spine length, thus providing experimental validation for the computational framework.
Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Corteza Entorrinal/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Espinas Dendríticas/metabolismo , ProteómicaRESUMEN
OBJECTIVE: Neuroimaging and other biomarker assays suggest that the pathological processes of Alzheimer's disease (AD) begin years prior to clinical dementia onset. However, some 30 to 50% of older individuals who harbor AD pathology do not become symptomatic in their lifetime. It is hypothesized that such individuals exhibit cognitive resilience that protects against AD dementia. We hypothesized that in cases with AD pathology, structural changes in dendritic spines would distinguish individuals who had or did not have clinical dementia. METHODS: We compared dendritic spines within layer II and III pyramidal neuron dendrites in Brodmann area 46 dorsolateral prefrontal cortex using the Golgi-Cox technique in 12 age-matched pathology-free controls, 8 controls with AD pathology (CAD), and 21 AD cases. We used highly optimized methods to trace impregnated dendrites from bright-field microscopy images that enabled accurate 3-dimensional digital reconstruction of dendritic structure for morphologic analyses. RESULTS: Spine density was similar among control and CAD cases but was reduced significantly in AD. Thin and mushroom spines were reduced significantly in AD compared to CAD brains, whereas stubby spine density was decreased significantly in CAD and AD compared to controls. Increased spine extent distinguished CAD cases from controls and AD. Linear regression analysis of all cases indicated that spine density was not associated with neuritic plaque score but did display negative correlation with Braak staging. INTERPRETATION: These observations provide cellular evidence to support the hypothesis that dendritic spine plasticity is a mechanism of cognitive resilience that protects older individuals with AD pathology from developing dementia. Ann Neurol 2017;82:602-614.
Asunto(s)
Enfermedad de Alzheimer/patología , Espinas Dendríticas/patología , Hipocampo/patología , Hipocampo/ultraestructura , Neuronas/patología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/fisiopatología , Análisis de Varianza , Estudios de Casos y Controles , Cognición/fisiología , Espinas Dendríticas/ultraestructura , Femenino , Humanos , Imagenología Tridimensional , Modelos Lineales , Masculino , Escala del Estado Mental , Persona de Mediana Edad , Neuroimagen , Tinción con Nitrato de PlataRESUMEN
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron loss. ALS is now associated with mutations in numerous genes, many of which cause disease in part through toxic gain-of-function mechanisms. Antisense oligonucleotides (ASOs) are small sequences of DNA that can reduce expression of a target gene at the post-transcriptional level, making them attractive for neutralizing mutant or toxic gene products. Advancements in the medicinal chemistries of ASOs have improved their pharmacodynamic profile to allow safe and effective delivery to the central nervous system. ASO therapies for ALS have rapidly developed over the last two decades, and ASOs that target SOD1, C9orf72, FUS, and ATXN2 are now in clinical trials for familial or sporadic forms of ALS. This review discusses the current state of ASO therapies for ALS, outlining their successes from preclinical development to early clinical trials.
Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos Antisentido/genética , Proteína C9orf72 , Superóxido Dismutasa-1/genética , Enfermedades Neurodegenerativas/tratamiento farmacológicoRESUMEN
Dendritic spines are small protrusions on dendrites that serve as the postsynaptic site of the majority of excitatory synapses. These structures are important for normal synaptic transmission, and alterations in their density and morphology have been documented in various disease states. Over 130 years ago, Ramón y Cajal used Golgi-stained tissue sections to study dendritic morphology. Despite the array of technological advances, including iontophoretic microinjection of Lucifer yellow (LY) fluorescent dye, Golgi staining continues to be one of the most popular approaches to visualize dendritic spines. Here, we compared dendritic spine density and morphology among pyramidal neurons in layers 2/3 of the mouse medial prefrontal cortex (mPFC) and pyramidal neurons in hippocampal CA1 using three-dimensional digital reconstructions of (1) brightfield microscopy z-stacks of Golgi-impregnated dendrites and (2) confocal microscopy z-stacks of LY-filled dendrites. Analysis of spine density revealed that the LY microinjection approach enabled detection of approximately three times as many spines as the Golgi staining approach in both brain regions. Spine volume measurements were larger using Golgi staining compared to LY microinjection in both mPFC and CA1. Spine length was mostly comparable between techniques in both regions. In the mPFC, head diameter was similar for Golgi staining and LY microinjection. However, in CA1, head diameter was approximately 50% smaller on LY-filled dendrites compared to Golgi staining. These results indicate that Golgi staining and LY microinjection yield different spine density and morphology measurements, with Golgi staining failing to detect dendritic spines and overestimating spine size.
Asunto(s)
Espinas Dendríticas , Células Piramidales , Animales , Dendritas , Hipocampo , Isoquinolinas , RatonesRESUMEN
Synapse or dendritic spine loss is the strongest correlate of cognitive decline in Alzheimer's disease (AD), and neurofibrillary tangles (NFTs), but not amyloid-ß plaques, associate more closely with transition to mild cognitive impairment. Yet, how dendritic spine architecture is affected by hyperphosphorylated tau is still an ongoing question. To address this, we combined cell and biochemical analyses of the Tau P301S mouse line (PS19). Individual pyramidal neurons in the hippocampus and medial prefrontal cortex (mPFC) were targeted for iontophoretic microinjection of fluorescent dye, followed by high-resolution confocal microscopy and 3D morphometry analysis. In the hippocampus, PS19 mice and non-transgenic (NTG) littermates displayed equivalent spine density at 6 and 9â¯months, but both genotypes exhibited age-related thin spine loss. PS19 mice exhibited significant increases in synaptic tau protein levels and mean dendritic spine head diameter with age. This suggests that CA1 pyramidal neurons in PS19 mice may undergo spine remodeling in response to tau accumulation and age. In the mPFC, spine density was similar among PS19 mice and NTG littermates at 6 and 9â¯months, but age-related reductions in synaptic tau levels were observed among PS19 mice. Collectively, these studies reveal brain region-specific changes in dendritic spine density and morphology in response to age and the presence of hyperphosphorylated tau in the PS19 mouse line.
Asunto(s)
Enfermedad de Alzheimer , Espinas Dendríticas , Tauopatías , Proteínas tau , Animales , Espinas Dendríticas/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Ratones , Ratones Transgénicos , Proteínas tau/genética , Proteínas tau/metabolismoRESUMEN
Subtle alterations in dendritic spine morphology can induce marked effects on connectivity patterns of neuronal circuits and subsequent cognitive behavior. Past studies of rodent and nonhuman primate aging revealed reductions in spine density with concomitant alterations in spine morphology among pyramidal neurons in the prefrontal cortex. In this report, we visualized and digitally reconstructed the three-dimensional morphology of dendritic spines from the dorsolateral prefrontal cortex in cognitively normal individuals aged 40-94 years. Linear models defined relationships between spines and age, Mini-Mental State Examination, apolipoprotein E (APOE) ε4 allele status, and Alzheimer's disease (AD) pathology. Similar to findings in other mammals, spine density correlated negatively with human aging. Reduced spine head diameter associated with higher Mini-Mental State Examination scores. Individuals harboring an APOE ε4 allele displayed greater numbers of dendritic filopodia and structural alterations in thin spines. The presence of AD pathology correlated with increased spine length, reduced thin spine head diameter, and increased filopodia density. Our study reveals how spine morphology in the prefrontal cortex changes in human aging and highlights key structural alterations in selective spine populations that may promote cognitively normal function despite harboring the APOE ε4 allele or AD pathology.
Asunto(s)
Enfermedad de Alzheimer/patología , Cognición , Espinas Dendríticas/patología , Espinas Dendríticas/fisiología , Predisposición Genética a la Enfermedad/genética , Plasticidad Neuronal , Corteza Prefrontal/patología , Adulto , Anciano , Envejecimiento , Apolipoproteína E4 , Envejecimiento Cognitivo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Corteza Prefrontal/citología , Corteza Prefrontal/diagnóstico por imagenRESUMEN
Rho-associated protein kinases (ROCK) 1 and 2 are attractive drug targets for a range of neurologic disorders; however, a critical barrier to ROCK-based therapeutics is ambiguity over whether there are isoform-specific roles for ROCKs in neuronal structural plasticity. Here, we used a genetics approach to address this long-standing question by analyzing both male and female adult ROCK1+/- and ROCK2+/- mice compared to littermate controls. Individual pyramidal neurons in the medial prefrontal cortex (mPFC) were targeted for iontophoretic microinjection of fluorescent dye, followed by high-resolution confocal microscopy and neuronal 3D reconstructions for morphometry analysis. Increased apical and basal dendritic length and intersections were observed in ROCK1+/- but not ROCK2+/- mice. Although dendritic spine densities were comparable among genotypes, apical spine length was decreased in ROCK1+/- but increased in ROCK2+/- mice. Spine head and neck diameter were reduced similarly in ROCK1+/- and ROCK2+/- mice; however, certain spine morphologic subclasses were more affected than others in a genotype-dependent manner. Biochemical analyses of ROCK substrates in synaptic fractions revealed that phosphorylation of LIM kinase and cofilin were reduced in ROCK1+/- and ROCK2+/- mice, while phosphorylation of myosin light chain was decreased exclusively in ROCK1+/- mice. Collectively, these observations implicate ROCK1 as a novel regulatory factor of neuronal dendritic structure and detail distinct and complementary roles of ROCKs in mPFC dendritic spine structure.