Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hum Mol Genet ; 26(20): 3960-3972, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29016854

RESUMEN

Hypomorphic mutations in the DNA repair enzyme RNase H2 cause the neuroinflammatory autoimmune disorder Aicardi-Goutières syndrome (AGS). Endogenous nucleic acids are believed to accumulate in patient cells and instigate pathogenic type I interferon expression. However, the underlying nucleic acid species amassing in the absence of RNase H2 has not been established yet. Here, we report that murine RNase H2 knockout cells accumulated cytosolic DNA aggregates virtually indistinguishable from micronuclei. RNase H2-dependent micronuclei were surrounded by nuclear lamina and most of them contained damaged DNA. Importantly, they induced expression of interferon-stimulated genes (ISGs) and co-localized with the nucleic acid sensor cGAS. Moreover, micronuclei associated with RNase H2 deficiency were cleared by autophagy. Consequently, induction of autophagy by pharmacological mTOR inhibition resulted in a significant reduction of cytosolic DNA and the accompanied interferon signature. Autophagy induction might therefore represent a viable therapeutic option for RNase H2-dependent disease. Endogenous retroelements have previously been proposed as a source of self-nucleic acids triggering inappropriate activation of the immune system in AGS. We used human RNase H2-knockout cells generated by CRISPR/Cas9 to investigate the impact of RNase H2 on retroelement propagation. Surprisingly, replication of LINE-1 and Alu elements was blunted in cells lacking RNase H2, establishing RNase H2 as essential host factor for the mobilisation of endogenous retrotransposons.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/enzimología , Micronúcleo Germinal/enzimología , Malformaciones del Sistema Nervioso/enzimología , Ribonucleasa H/deficiencia , Animales , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/patología , Autofagia/genética , ADN/genética , Daño del ADN , Replicación del ADN , Ratones , Ratones Noqueados , Micronúcleo Germinal/genética , Micronúcleo Germinal/inmunología , Mutación , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/patología , Ribonucleasa H/genética , Ribonucleasa H/metabolismo
2.
Mol Ther Methods Clin Dev ; 21: 83-93, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-33768132

RESUMEN

Gene therapeutic approaches to aortic diseases require efficient vectors and delivery systems for transduction of endothelial cells (ECs) and smooth muscle cells (SMCs). Here, we developed a novel strategy to efficiently deliver a previously described vascular-specific adeno-associated viral (AAV) vector to the abdominal aorta by application of alginate hydrogels. To efficiently transduce ECs and SMCs, we used AAV9 vectors with a modified capsid (AAV9SLR) encoding enhanced green fluorescent protein (EGFP), as wild-type AAV vectors do not transduce ECs and SMCs well. AAV9SLR vectors were embedded into a solution containing sodium alginate and polymerized into hydrogels. Gels were surgically implanted around the adventitia of the infrarenal abdominal aorta of adult mice. Three weeks after surgery, an almost complete transduction of both the endothelium and tunica media adjacent to the gel was demonstrated in tissue sections. Hydrogel-mediated delivery resulted in induction of neutralizing antibodies but did not cause inflammatory responses in serum or the aortic wall. To further determine the translational potential, aortic tissue from patients was embedded ex vivo into AAV9SLR-containing hydrogel, and efficient transduction could be confirmed. These findings demonstrate that alginate hydrogel harboring a vascular-targeting AAV9SLR vector allows efficient local transduction of the aortic wall.

3.
J Heart Lung Transplant ; 39(4): 389-398, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32035727

RESUMEN

BACKGROUND: Allograft vasculopathy (AV) is the primary limiting factor for long-term graft survival. An increased activity of matrix metalloproteinases (MMPs) contributes to neointima formation in AV and represents a potential therapeutic target. Adeno-associated virus (AAV)-mediated gene therapy comprises a potentially benign vector model for the long-term expression of MMP antagonists. METHODS: Aortic allografts from DBA/2 mice were incubated with control buffer, AAV-enhanced green fluorescence protein (EGFP), or tissue inhibitor of metalloproteinases 1 (TIMP-1)-loaded AAV (AAV-TIMP-1) and transplanted into the infrarenal aorta of C57BL/6 mice. Cyclosporine A (10 mg/kg body weight) was administered daily. Explantation as well as histomorphometric and immunohistochemical evaluation was performed after 30 days. Matrix metalloproteinase (MMP) activity was visualized by gelatin in situ zymography. RESULTS: Intima-to-media area ratio and neointima formation were significantly reduced in the AAV-TIMP-1 treatment group compared with those in the control group (by 40%; p < 0.001) and the AAV-EGFP group (by 38.2%; p < 0.001). TIMP-1 overexpression positively affected several pathomechanisms for the development of AV both in vitro and in vivo as compared to that in the control groups: endothelium integrity was preserved as shown by zona occludens 1 and occludin staining; MMP9 expression and activity were significantly reduced (p = 0.01); and smooth muscle cell migration was significantly reduced as smooth muscle actin positive cells predominantly remained in the aortic media in the treatment group (p = 0.001). Moreover, macrophage infiltration was markedly reduced by 49% in the AAV-TIMP-1 group (p < 0.001). CONCLUSION: Immediate post-harvesting allograft incubation with AAV-TIMP-1 reduces neointima formation and macrophage infiltration, constituting a possible adjunct therapeutic strategy to preserve graft function after transplantation.


Asunto(s)
Aorta Torácica/trasplante , Dependovirus/enzimología , Regulación de la Expresión Génica , Rechazo de Injerto/genética , Inhibidor Tisular de Metaloproteinasa-1/genética , Túnica Íntima/metabolismo , Aloinjertos , Animales , Aorta Torácica/metabolismo , Aorta Torácica/patología , Western Blotting , Células Cultivadas , Modelos Animales de Enfermedad , Rechazo de Injerto/enzimología , Rechazo de Injerto/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , ARN/genética , Inhibidor Tisular de Metaloproteinasa-1/biosíntesis , Túnica Íntima/patología
4.
Nat Commun ; 11(1): 5432, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33116134

RESUMEN

Adeno-associated virus (AAV) forms the basis for several commercial gene therapy products and for countless gene transfer vectors derived from natural or synthetic viral isolates that are under intense preclinical evaluation. Here, we report a versatile pipeline that enables the direct side-by-side comparison of pre-selected AAV capsids in high-throughput and in the same animal, by combining DNA/RNA barcoding with multiplexed next-generation sequencing. For validation, we create three independent libraries comprising 183 different AAV variants including widely used benchmarks and screened them in all major tissues in adult mice. Thereby, we discover a peptide-displaying AAV9 mutant called AAVMYO that exhibits superior efficiency and specificity in the musculature including skeletal muscle, heart and diaphragm following peripheral delivery, and that holds great potential for muscle gene therapy. Our comprehensive methodology is compatible with any capsids, targets and species, and will thus facilitate and accelerate the stratification of optimal AAV vectors for human gene therapy.


Asunto(s)
Proteínas de la Cápside/genética , Dependovirus/genética , Vectores Genéticos , Músculos/metabolismo , Músculos/virología , Animales , Cápside , Código de Barras del ADN Taxonómico , Femenino , Biblioteca de Genes , Terapia Genética/métodos , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación , Especificidad de Órganos
5.
Front Immunol ; 9: 587, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29662492

RESUMEN

Aicardi-Goutières syndrome (AGS) is a rare early onset childhood encephalopathy caused by persistent neuroinflammation of autoimmune origin. AGS is a genetic disorder and >50% of affected individuals bear hypomorphic mutations in ribonuclease H2 (RNase H2). All available RNase H2 mouse models so far fail to mimic the prominent CNS involvement seen in AGS. To establish a mouse model recapitulating the human disease, we deleted RNase H2 specifically in the brain, the most severely affected organ in AGS. Although RNase H2ΔGFAP mice lacked the nuclease in astrocytes and a majority of neurons, no disease signs were apparent in these animals. We additionally confirmed these results in a second, neuron-specific RNase H2 knockout mouse line. However, when astrocytes were isolated from brains of RNase H2ΔGFAP mice and cultured under mitogenic conditions, they showed signs of DNA damage and premature senescence. Enhanced expression of interferon-stimulated genes (ISGs) represents the most reliable AGS biomarker. Importantly, primary RNase H2ΔGFAP astrocytes displayed significantly increased ISG transcript levels, which we failed to detect in in vivo in brains of RNase H2ΔGFAP mice. Isolated astrocytes primed by DNA damage, including RNase H2-deficiency, exhibited a heightened innate immune response when exposed to bacterial or viral antigens. Taken together, we established a valid cellular AGS model that utilizes the very cell type responsible for disease pathology, the astrocyte, and phenocopies major molecular defects observed in AGS patient cells.


Asunto(s)
Astrocitos/inmunología , Astrocitos/metabolismo , Enfermedades Autoinmunes/etiología , Inflamación/etiología , Ácidos Nucleicos/inmunología , Ribonucleasa H/deficiencia , Animales , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Enfermedades Autoinmunes del Sistema Nervioso/etiología , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/patología , Biomarcadores , Encéfalo/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental , Femenino , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Noqueados , Malformaciones del Sistema Nervioso/etiología , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/patología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA