Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Cell ; 174(3): 590-606.e21, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29961574

RESUMEN

Cerebral cortex size differs dramatically between reptiles, birds, and mammals, owing to developmental differences in neuron production. In mammals, signaling pathways regulating neurogenesis have been identified, but genetic differences behind their evolution across amniotes remain unknown. We show that direct neurogenesis from radial glia cells, with limited neuron production, dominates the avian, reptilian, and mammalian paleocortex, whereas in the evolutionarily recent mammalian neocortex, most neurogenesis is indirect via basal progenitors. Gain- and loss-of-function experiments in mouse, chick, and snake embryos and in human cerebral organoids demonstrate that high Slit/Robo and low Dll1 signaling, via Jag1 and Jag2, are necessary and sufficient to drive direct neurogenesis. Attenuating Robo signaling and enhancing Dll1 in snakes and birds recapitulates the formation of basal progenitors and promotes indirect neurogenesis. Our study identifies modulation in activity levels of conserved signaling pathways as a primary mechanism driving the expansion and increased complexity of the mammalian neocortex during amniote evolution.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Animales , Proteínas de Unión al Calcio , Corteza Cerebral/metabolismo , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Jagged-1 , Proteína Jagged-2 , Mamíferos/embriología , Ratones , Ratones Endogámicos C57BL , Neocórtex/fisiología , Células-Madre Neurales , Neurogénesis/fisiología , Neuroglía/fisiología , Neuronas , Factor de Transcripción PAX6/metabolismo , Proteínas Represoras , Transducción de Señal , Serpientes/embriología , Proteínas Roundabout
2.
Cell ; 169(4): 621-635.e16, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475893

RESUMEN

The folding of the mammalian cerebral cortex into sulci and gyri is thought to be favored by the amplification of basal progenitor cells and their tangential migration. Here, we provide a molecular mechanism for the role of migration in this process by showing that changes in intercellular adhesion of migrating cortical neurons result in cortical folding. Mice with deletions of FLRT1 and FLRT3 adhesion molecules develop macroscopic sulci with preserved layered organization and radial glial morphology. Cortex folding in these mutants does not require progenitor cell amplification but is dependent on changes in neuron migration. Analyses and simulations suggest that sulcus formation in the absence of FLRT1/3 results from reduced intercellular adhesion, increased neuron migration, and clustering in the cortical plate. Notably, FLRT1/3 expression is low in the human cortex and in future sulcus areas of ferrets, suggesting that intercellular adhesion is a key regulator of cortical folding across species.


Asunto(s)
Movimiento Celular , Corteza Cerebral/fisiología , Glicoproteínas de Membrana/metabolismo , Neuronas/citología , Animales , Células Cultivadas , Corteza Cerebral/citología , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Hurones , Humanos , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/análisis , Ratones , Ratones Noqueados , Células Piramidales/metabolismo
3.
Physiol Rev ; 102(2): 511-550, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34632805

RESUMEN

The human brain is characterized by the large size and intricate folding of its cerebral cortex, which are fundamental for our higher cognitive function and frequently altered in pathological dysfunction. Cortex folding is not unique to humans, nor even to primates, but is common across mammals. Cortical growth and folding are the result of complex developmental processes that involve neural stem and progenitor cells and their cellular lineages, the migration and differentiation of neurons, and the genetic programs that regulate and fine-tune these processes. All these factors combined generate mechanical stress and strain on the developing neural tissue, which ultimately drives orderly cortical deformation and folding. In this review we examine and summarize the current knowledge on the molecular, cellular, histogenic, and mechanical mechanisms that are involved in and influence folding of the cerebral cortex, and how they emerged and changed during mammalian evolution. We discuss the main types of pathological malformations of human cortex folding, their specific developmental origin, and how investigating their genetic causes has illuminated our understanding of key events involved. We close our review by presenting the animal and in vitro models of cortex folding that are currently used to study these devastating developmental brain disorders in children, and what are the main challenges that remain ahead of us to fully understand brain folding.


Asunto(s)
Encéfalo/fisiología , Encéfalo/fisiopatología , Corteza Cerebral/fisiología , Neuronas/fisiología , Animales , Evolución Biológica , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Humanos , Mamíferos
4.
Cell ; 153(3): 535-49, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23622239

RESUMEN

Evolution of the mammalian brain encompassed a remarkable increase in size of the cerebral cortex, which includes tangential and radial expansion. However, the mechanisms underlying these key features are still largely unknown. Here, we identified the DNA-associated protein Trnp1 as a regulator of cerebral cortex expansion in both of these dimensions. Gain- and loss-of-function experiments in the mouse cerebral cortex in vivo demonstrate that high Trnp1 levels promote neural stem cell self-renewal and tangential expansion. In contrast, lower levels promote radial expansion, with a potent increase of the number of intermediate progenitors and basal radial glial cells leading to folding of the otherwise smooth murine cerebral cortex. Remarkably, TRNP1 expression levels exhibit regional differences in the cerebral cortex of human fetuses, anticipating radial or tangential expansion. Thus, the dynamic regulation of Trnp1 is critical to control tangential and radial expansion of the cerebral cortex in mammals.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular , Corteza Cerebral/citología , Proteínas de Unión al ADN , Embrión de Mamíferos/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Datos de Secuencia Molecular , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Activación Transcripcional
5.
Nature ; 567(7746): 113-117, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30787442

RESUMEN

The expansion of brain size is accompanied by a relative enlargement of the subventricular zone during development. Epithelial-like neural stem cells divide in the ventricular zone at the ventricles of the embryonic brain, self-renew and generate basal progenitors1 that delaminate and settle in the subventricular zone in enlarged brain regions2. The length of time that cells stay in the subventricular zone is essential for controlling further amplification and fate determination. Here we show that the interphase centrosome protein AKNA has a key role in this process. AKNA localizes at the subdistal appendages of the mother centriole in specific subtypes of neural stem cells, and in almost all basal progenitors. This protein is necessary and sufficient to organize centrosomal microtubules, and promote their nucleation and growth. These features of AKNA are important for mediating the delamination process in the formation of the subventricular zone. Moreover, AKNA regulates the exit from the subventricular zone, which reveals the pivotal role of centrosomal microtubule organization in enabling cells to both enter and remain in the subventricular zone. The epithelial-to-mesenchymal transition is also regulated by AKNA in other epithelial cells, demonstrating its general importance for the control of cell delamination.


Asunto(s)
Centrosoma/metabolismo , Proteínas de Unión al ADN/metabolismo , Ventrículos Laterales/citología , Ventrículos Laterales/embriología , Microtúbulos/metabolismo , Neurogénesis , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Humanos , Uniones Intercelulares/metabolismo , Interfase , Ventrículos Laterales/anatomía & histología , Glándulas Mamarias Animales/citología , Ratones , Tamaño de los Órganos , Organoides/citología
6.
Proc Natl Acad Sci U S A ; 119(37): e2120079119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067316

RESUMEN

The extracellular protein Reelin, expressed by Cajal-Retzius (CR) cells at early stages of cortical development and at late stages by GABAergic interneurons, regulates radial migration and the "inside-out" pattern of positioning. Current models of Reelin functions in corticogenesis focus on early CR cell-derived Reelin in layer I. However, developmental disorders linked to Reelin deficits, such as schizophrenia and autism, are related to GABAergic interneuron-derived Reelin, although its role in migration has not been established. Here we selectively inactivated the Reln gene in CR cells or GABAergic interneurons. We show that CR cells have a major role in the inside-out order of migration, while CR and GABAergic cells sequentially cooperate to prevent invasion of cortical neurons into layer I. Furthermore, GABAergic cell-derived Reelin compensates some features of the reeler phenotype and is needed for the fine tuning of the layer-specific distribution of cortical neurons. In the hippocampus, the inactivation of Reelin in CR cells causes dramatic alterations in the dentate gyrus and mild defects in the hippocampus proper. These findings lead to a model in which both CR and GABAergic cell-derived Reelin cooperate to build the inside-out order of corticogenesis, which might provide a better understanding of the mechanisms involved in the pathogenesis of neuropsychiatric disorders linked to abnormal migration and Reelin deficits.


Asunto(s)
Corteza Cerebral , Proteínas del Tejido Nervioso , Neuronas , Proteína Reelina , Animales , Movimiento Celular , Corteza Cerebral/citología , Corteza Cerebral/embriología , Neuronas GABAérgicas/enzimología , Hipocampo/embriología , Hipocampo/enzimología , Interneuronas/enzimología , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/enzimología , Proteína Reelina/genética , Proteína Reelina/metabolismo
7.
EMBO J ; 39(21): e105479, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32985705

RESUMEN

Structural integrity and cellular homeostasis of the embryonic stem cell niche are critical for normal tissue development. In the telencephalic neuroepithelium, this is controlled in part by cell adhesion molecules and regulators of progenitor cell lineage, but the specific orchestration of these processes remains unknown. Here, we studied the role of microRNAs in the embryonic telencephalon as key regulators of gene expression. By using the early recombiner Rx-Cre mouse, we identify novel and critical roles of miRNAs in early brain development, demonstrating they are essential to preserve the cellular homeostasis and structural integrity of the telencephalic neuroepithelium. We show that Rx-Cre;DicerF/F mouse embryos have a severe disruption of the telencephalic apical junction belt, followed by invagination of the ventricular surface and formation of hyperproliferative rosettes. Transcriptome analyses and functional experiments in vivo show that these defects result from upregulation of Irs2 upon loss of let-7 miRNAs in an apoptosis-independent manner. Our results reveal an unprecedented relevance of miRNAs in early forebrain development, with potential mechanistic implications in pediatric brain cancer.


Asunto(s)
Homeostasis , Proteínas Sustrato del Receptor de Insulina/metabolismo , MicroARNs/metabolismo , Proteínas Represoras/metabolismo , Telencéfalo/embriología , Telencéfalo/metabolismo , Uniones Adherentes , Animales , Apoptosis , Proliferación Celular , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Factor de Transcripción PAX6/metabolismo , Proteínas Represoras/genética , Células Madre/metabolismo , Telencéfalo/citología , Factores de Transcripción/metabolismo
8.
Nat Rev Neurosci ; 20(3): 161-176, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30610227

RESUMEN

Folding of the cerebral cortex is a fundamental milestone of mammalian brain evolution and is associated with dramatic increases in size and complexity. New animal models, genetic tools and bioengineering materials have moved the study of cortical folding from simple phenomenological observation to sophisticated experimental testing. Here, we provide an overview of how genetics, cell biology and biomechanics shape this complex and multifaceted process and affect each other. We discuss the evolution of cortical folding and the genomic changes in the primate lineage that seem to be responsible for the advent of larger brains and cortical folding. Emerging technologies now provide unprecedented tools to analyse and manipulate cortical folding, with the promise of elucidating the mechanisms underlying the stereotyped folding of the cerebral cortex in its full complexity.


Asunto(s)
Evolución Biológica , Corteza Cerebral/anatomía & histología , Neuroglía/citología , Neuronas/citología , Animales , Movimiento Celular/fisiología , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Humanos , Neurogénesis/fisiología
9.
Neuroimage ; 276: 120212, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37269959

RESUMEN

Intrinsic coupling modes (ICMs) can be observed in ongoing brain activity at multiple spatial and temporal scales. Two families of ICMs can be distinguished: phase and envelope ICMs. The principles that shape these ICMs remain partly elusive, in particular their relation to the underlying brain structure. Here we explored structure-function relationships in the ferret brain between ICMs quantified from ongoing brain activity recorded with chronically implanted micro-ECoG arrays and structural connectivity (SC) obtained from high-resolution diffusion MRI tractography. Large-scale computational models were used to explore the ability to predict both types of ICMs. Importantly, all investigations were conducted with ICM measures that are sensitive or insensitive to volume conduction effects. The results show that both types of ICMs are significantly related to SC, except for phase ICMs when using measures removing zero-lag coupling. The correlation between SC and ICMs increases with increasing frequency which is accompanied by reduced delays. Computational models produced results that were highly dependent on the specific parameter settings. The most consistent predictions were derived from measures solely based on SC. Overall, the results demonstrate that patterns of cortical functional coupling as reflected in both phase and envelope ICMs are both related, albeit to different degrees, to the underlying structural connectivity in the cerebral cortex.


Asunto(s)
Corteza Cerebral , Hurones , Humanos , Animales , Corteza Cerebral/diagnóstico por imagen , Encéfalo , Mapeo Encefálico/métodos , Electrocorticografía
11.
Bioessays ; 43(7): e2100073, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33998002

RESUMEN

The size and organization of the brain are determined by the activity of progenitor cells early in development. Key mechanisms regulating progenitor cell biology involve miRNAs. These small noncoding RNA molecules bind mRNAs with high specificity, controlling their abundance and expression. The role of miRNAs in brain development has been studied extensively, but their involvement at early stages remained unknown until recently. Here, recent findings showing the important role of miRNAs in the earliest phases of brain development are reviewed, and it is discussed how loss of specific miRNAs leads to pathological conditions, particularly adult and pediatric brain tumors. Let-7 miRNA downregulation and the initiation of embryonal tumors with multilayered rosettes (ETMR), a novel link recently discovered by the laboratory, are focused upon. Finally, it is discussed how miRNAs may be used for the diagnosis and therapeutic treatment of pediatric brain tumors, with the hope of improving the prognosis of these devastating diseases.


Asunto(s)
MicroARNs , Neoplasias de Células Germinales y Embrionarias , Tumores Neuroectodérmicos Primitivos , Encéfalo , Desarrollo Embrionario/genética , Humanos , MicroARNs/genética
12.
Cell Mol Life Sci ; 77(8): 1435-1460, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31563997

RESUMEN

The cerebral cortex varies dramatically in size and complexity between amniotes due to differences in neuron number and composition. These differences emerge during embryonic development as a result of variations in neurogenesis, which are thought to recapitulate modifications occurred during evolution that culminated in the human neocortex. Here, we review work from the last few decades leading to our current understanding of the evolution of neurogenesis and size of the cerebral cortex. Focused on specific examples across vertebrate and amniote phylogeny, we discuss developmental mechanisms regulating the emergence, lineage, complexification and fate of cortical germinal layers and progenitor cell types. At the cellular level, we discuss the fundamental impact of basal progenitor cells and the advent of indirect neurogenesis on the increased number and diversity of cortical neurons and layers in mammals, and on cortex folding. Finally, we discuss recent work that unveils genetic and molecular mechanisms underlying this progressive expansion and increased complexity of the amniote cerebral cortex during evolution, with a particular focus on those leading to human-specific features. Whereas new genes important in human brain development emerged the recent hominid lineage, regulation of the patterns and levels of activity of highly conserved signaling pathways are beginning to emerge as mechanisms of central importance in the evolutionary increase in cortical size and complexity across amniotes.


Asunto(s)
Evolución Biológica , Corteza Cerebral/fisiología , Neurogénesis , Animales , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Evolución Molecular , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo
13.
EMBO J ; 35(10): 1021-44, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27056680

RESUMEN

One of the most prominent features of the human brain is the fabulous size of the cerebral cortex and its intricate folding. Cortical folding takes place during embryonic development and is important to optimize the functional organization and wiring of the brain, as well as to allow fitting a large cortex in a limited cranial volume. Pathological alterations in size or folding of the human cortex lead to severe intellectual disability and intractable epilepsy. Hence, cortical expansion and folding are viewed as key processes in mammalian brain development and evolution, ultimately leading to increased intellectual performance and, eventually, to the emergence of human cognition. Here, we provide an overview and discuss some of the most significant advances in our understanding of cortical expansion and folding over the last decades. These include discoveries in multiple and diverse disciplines, from cellular and molecular mechanisms regulating cortical development and neurogenesis, genetic mechanisms defining the patterns of cortical folds, the biomechanics of cortical growth and buckling, lessons from human disease, and how genetic evolution steered cortical size and folding during mammalian evolution.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Animales , Fenómenos Biomecánicos , Corteza Cerebral/patología , Corteza Cerebral/fisiología , Fenómenos Genéticos , Humanos
14.
J Neurosci ; 38(4): 776-783, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29367288

RESUMEN

Folding of the cerebral cortex is as highly intriguing as poorly understood. At first sight, this may appear as simple tissue crumpling inside an excessively small cranium, but the process is clearly much more complex and developmentally predetermined. Whereas theoretical modeling supports a critical role for biomechanics, experimental evidence demonstrates the fundamental role of specific progenitor cell types, cellular processes, and genetic programs on cortical folding.Dual Perspectives Companion Paper: How Forces Fold the Cerebral Cortex, by Christopher D. Kroenke and Philip V. Bayly.


Asunto(s)
Corteza Cerebral/embriología , Modelos Neurológicos , Animales , Fenómenos Biomecánicos , Embrión de Mamíferos , Humanos , Modelos Teóricos
15.
EMBO J ; 34(14): 1859-74, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-25916825

RESUMEN

Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large-scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparing between regions prospective of fold and fissure. We find unique transcriptional signatures in each germinal compartment, where thousands of genes are differentially expressed between regions, including ~80% of genes mutated in human cortical malformations. These regional differences emerge from the existence of discrete domains of gene expression, which occur at multiple locations across the developing cortex of ferret and human, but not the lissencephalic mouse. Complex expression patterns emerge late during development and map the eventual location of folds or fissures. Protomaps of gene expression within germinal layers may contribute to define cortical folds or functional areas, but our findings demonstrate that they distinguish the development of gyrencephalic cortices.


Asunto(s)
Encéfalo/embriología , Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Hurones/genética , Regulación del Desarrollo de la Expresión Génica , Malformaciones del Desarrollo Cortical/genética , Animales , Animales Recién Nacidos , Corteza Cerebral/anomalías , Corteza Cerebral/embriología , Quinasa 6 Dependiente de la Ciclina/genética , Femenino , Hurones/embriología , Hurones/crecimiento & desarrollo , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Tamaño de los Órganos , Embarazo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética
16.
Cereb Cortex ; 27(9): 4586-4606, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28922855

RESUMEN

Development of the cerebral cortex depends critically on the regulation of progenitor cell proliferation and fate. Cortical progenitor cells are remarkably diverse with regard to their morphology as well as laminar and areal position. Extrinsic factors, such as thalamic axons, have been proposed to play key roles in progenitor cell regulation, but the diversity, extent and timing of interactions between extrinsic elements and each class of cortical progenitor cell in higher mammals remain undefined. Here we use the ferret to demonstrate the existence of a complex set of extrinsic elements that may interact, alone or in combination, with subpopulations of progenitor cells, defining a code of extrinsic influences. This code and its complexity vary significantly between developmental stages, layer of residence and morphology of progenitor cells. By analyzing the spatial-temporal overlap of progenitor cell subtypes with neuronal and axonal populations, we show that multiple sets of migrating neurons and axon tracts overlap extensively with subdivisions of the Subventricular Zones, in an exquisite lamina-specific pattern. Our findings provide a framework for understanding the feedback influence of both intra- and extra-cortical elements onto progenitor cells to modulate their dynamics and fate decisions in gyrencephalic brains.


Asunto(s)
Movimiento Celular/fisiología , Corteza Cerebral/crecimiento & desarrollo , Neuronas/fisiología , Tálamo/citología , Animales , Animales Recién Nacidos , Hurones , Células-Madre Neurales , Neurogénesis/fisiología
17.
EMBO J ; 32(13): 1817-28, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23624932

RESUMEN

Size and folding of the cerebral cortex increased massively during mammalian evolution leading to the current diversity of brain morphologies. Various subtypes of neural stem and progenitor cells have been proposed to contribute differently in regulating thickness or folding of the cerebral cortex during development, but their specific roles have not been demonstrated. We report that the controlled expansion of unipotent basal progenitors in mouse embryos led to megalencephaly, with increased surface area of the cerebral cortex, but not to cortical folding. In contrast, expansion of multipotent basal progenitors in the naturally gyrencephalic ferret was sufficient to drive the formation of additional folds and fissures. In both models, changes occurred while preserving a structurally normal, six-layered cortex. Our results are the first experimental demonstration of specific and distinct roles for basal progenitor subtypes in regulating cerebral cortex size and folding during development underlying the superior intellectual capability acquired by higher mammals during evolution.


Asunto(s)
Encéfalo/fisiología , Diferenciación Celular , Corteza Cerebral/fisiología , Embrión de Mamíferos/fisiología , Proteínas de Filamentos Intermediarios/fisiología , Proteínas del Tejido Nervioso/fisiología , Células Madre/fisiología , Animales , Encéfalo/citología , Células Cultivadas , Corteza Cerebral/citología , Embrión de Mamíferos/citología , Hurones , Técnicas para Inmunoenzimas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nestina , Células Madre/citología
18.
Glia ; 63(8): 1303-19, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25808466

RESUMEN

Radial glia cells play fundamental roles in the development of the cerebral cortex, acting both as the primary stem and progenitor cells, as well as the guides for neuronal migration and lamination. These critical functions of radial glia cells in cortical development have been discovered mostly during the last 15 years and, more recently, seminal studies have demonstrated the existence of a remarkable diversity of additional cortical progenitor cell types, including a variety of basal radial glia cells with key roles in cortical expansion and folding, both in ontogeny and phylogeny. In this review, we summarize the main cellular and molecular mechanisms known to be involved in cerebral cortex development in mouse, as the currently preferred animal model, and then compare these with known mechanisms in other vertebrates, both mammal and nonmammal, including human. This allows us to present a global picture of how radial glia cells and the cerebral cortex seem to have coevolved, from reptiles to primates, leading to the remarkable diversity of vertebrate cortical phenotypes.


Asunto(s)
Evolución Biológica , Corteza Cerebral/fisiología , Neuroglía/fisiología , Animales , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Humanos , Neuroglía/citología
19.
Neuron ; 112(9): 1373-1375, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38697018

RESUMEN

Maternal well-being is important for the development of the fetus, with a key influence on its nervous system. In this issue of Neuron, Krontira et al.1 implicate glucocorticoids, the stress hormones, in the regulation of neural stem cell identity and proliferation, with long-lasting consequences on brain architecture and educational attainment.


Asunto(s)
Glucocorticoides , Neurogénesis , Humanos , Glucocorticoides/farmacología , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/citología , Células-Madre Neurales/efectos de los fármacos
20.
Sci Adv ; 10(23): eadn1640, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38838158

RESUMEN

Folding of the cerebral cortex is a key aspect of mammalian brain development and evolution, and defects are linked to severe neurological disorders. Primary folding occurs in highly stereotyped patterns that are predefined in the cortical germinal zones by a transcriptomic protomap. The gene regulatory landscape governing the emergence of this folding protomap remains unknown. We characterized the spatiotemporal dynamics of gene expression and active epigenetic landscape (H3K27ac) across prospective folds and fissures in ferret. Our results show that the transcriptomic protomap begins to emerge at early embryonic stages, and it involves cell-fate signaling pathways. The H3K27ac landscape reveals developmental cell-fate restriction and engages known developmental regulators, including the transcription factor Cux2. Manipulating Cux2 expression in cortical progenitors changed their proliferation and the folding pattern in ferret, caused by selective transcriptional changes as revealed by single-cell RNA sequencing analyses. Our findings highlight the key relevance of epigenetic mechanisms in defining the patterns of cerebral cortex folding.


Asunto(s)
Corteza Cerebral , Epigénesis Genética , Hurones , Regulación del Desarrollo de la Expresión Génica , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/embriología , Hurones/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Histonas/metabolismo , Histonas/genética , Redes Reguladoras de Genes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA