Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652687

RESUMEN

The signaling molecule auxin sits at the nexus of plant biology and coordinates essentially all growth and developmental processes in plants. Auxin molecules are transported throughout plant tissues and are capable of evoking highly specific physiological responses in plant cells by inducing various molecular pathways. In many of these pathways, proteolysis plays a crucial role for correct physiological responses. This review provides a chronology of the discovery and characterisation of the auxin receptor, which is a fascinating example of separate research trajectories ultimately converging on the discovery of a core auxin signaling hub which relies on degradation of a family of transcriptional inhibitor proteins - the Aux/IAAs. Beyond describing the "classical" proteolysis-driven auxin response system, we explore more recent examples of the interconnection of proteolytic systems, which target a range of other auxin signaling proteins, and auxin response. By highlighting these emerging concepts, we provide potential future directions to further investigate the role of protein degradation within the framework of auxin response.

2.
Proc Natl Acad Sci U S A ; 117(30): 18110-18118, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32669427

RESUMEN

Mechanical patterns control a variety of biological processes in plants. The microviscosity of cellular structures effects the diffusion rate of molecules and organelles, thereby affecting processes such as metabolism and signaling. Spatial variations in local viscosity are also generated during fundamental events in the cell life cycle. While crucial to a complete understanding of plant mechanobiology, resolving subcellular microviscosity patterns in plants has remained an unsolved challenge. We present an imaging microviscosimetry toolbox of molecular rotors that yield complete microviscosity maps of cells and tissues, specifically targeting the cytosol, vacuole, plasma membrane, and wall of plant cells. These boron-dipyrromethene (BODIPY)-based molecular rotors are rigidochromic by means of coupling the rate of an intramolecular rotation, which depends on the mechanics of their direct surroundings, with their fluorescence lifetime. This enables the optical mapping of fluidity and porosity patterns in targeted cellular compartments. We show how apparent viscosity relates to cell function in the root, how the growth of cellular protrusions induces local tension, and how the cell wall is adapted to perform actuation surrounding leaf pores. These results pave the way to the noninvasive micromechanical mapping of complex tissues.


Asunto(s)
Modelos Biológicos , Células Vegetales , Fenómenos Fisiológicos de las Plantas , Viscosidad , Colorantes Fluorescentes/química , Proteínas Motoras Moleculares/metabolismo , Sondas Moleculares/química , Especificidad de Órganos , Orgánulos/metabolismo
3.
Biomacromolecules ; 23(3): 1195-1204, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35042326

RESUMEN

Encapsulation of proteins can have advantages for their protection, stability, and delivery purposes. One of the options to encapsulate proteins is to incorporate them in complex coacervate core micelles (C3Ms). This can easily be achieved by mixing aqueous solutions of the protein and an oppositely charged neutral-hydrophilic diblock copolymer. However, protein-containing C3Ms often suffer from salt-inducible disintegration due to the low charge density of proteins. The aim of this study is to improve the salt stability of protein-containing C3Ms by increasing the net charge of the protein by tagging it with a charged polypeptide. As a model protein, we used CotA laccase and generated variants with 10, 20, 30, and 40 glutamic acids attached at the C-terminus of CotA using genetic engineering. Micelles were obtained by mixing the five CotA variants with poly(N-methyl-2-vinyl-pyridinium)-block-poly(ethylene oxide) (PM2VP128-b-PEO477) at pH 10.8. Hydrodynamic radii of the micelles of approximately 31, 27, and 23 nm for native CotA, CotA-E20, and CotA-E40, respectively, were determined using dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS). The encapsulation efficiency was not affected using enzymes with a polyglutamic acid tail but resulted in more micelles with a smaller number of enzyme molecules per micelle. Furthermore, it was shown that the addition of a polyglutamic acid tail to CotA indeed resulted in improved salt stability of enzyme-containing C3Ms. Interestingly, the polyglutamic acid CotA variants showed an enhanced enzyme activity. This study demonstrates that increasing the net charge of enzymes through genetic engineering is a promising strategy to improve the practical applicability of C3Ms as enzyme delivery systems.


Asunto(s)
Micelas , Ácido Poliglutámico , Péptidos , Polietilenglicoles/química , Polímeros/química , Cloruro de Sodio
4.
Soft Matter ; 18(15): 3052-3062, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35363245

RESUMEN

Complex coacervate core micelles (C3Ms) are formed by mixing aqueous solutions of a charged (bio)macromolecule with an oppositely charged-neutral hydrophilic diblock copolymer. The stability of these structures is dependent on the ionic strength of the solution; above a critical ionic strength, the micelles will completely disintegrate. This instability at high ionic strengths is the main drawback for their application in, e.g., drug delivery systems or protein protection. In addition, the stability of C3Ms composed of weak polyelectrolytes is pH-dependent as well. The aim of this study is to assess the effectiveness of covalent crosslinking of the complex coacervate core to improve the stability of C3Ms. We studied the formation of C3Ms using a quaternized and amine-functionalized cationic-neutral diblock copolymer, poly(2-vinylpyridine)-block-poly(ethylene oxide) (QP2VP-b-PEO), and an anionic homopolymer, poly(acrylic acid) (PAA). Two different core-crosslinking strategies were employed that resulted in crosslinks between both types of polyelectrolyte chains in the core (i.e., between QP2VP and PAA) or in crosslinks between polyelectrolyte chains of the same type only (i.e., QP2VP). For these two strategies we used the crosslinkers 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and dimethyl-3,3'-dithiopropionimidate dihydrochloride (DTBP), respectively. EDC provides permanent crosslinks, while DTBP crosslinks can be broken by a reducing agent. Dynamic light scattering showed that both approaches significantly improved the stability of C3Ms against salt and pH changes. Furthermore, reduction of the disulphide bridges in the DTBP core-crosslinked micelles largely restored the original salt-stability profile. Therefore, this feature provides an excellent starting point for the application of C3Ms in controlled release formulations.


Asunto(s)
Micelas , Polímeros , Sistemas de Liberación de Medicamentos , Polielectrolitos , Polietilenglicoles/química , Polímeros/química
5.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34298920

RESUMEN

Protein dimerization plays a crucial role in the regulation of numerous biological processes. However, detecting protein dimers in a cellular environment is still a challenge. Here we present a methodology to measure the extent of dimerization of GFP-tagged proteins in living cells, using a combination of fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analysis of single-color fluorescence fluctuation data. We named this analysis method brightness and diffusion global analysis (BDGA) and adapted it for biological purposes. Using cell lysates containing different ratios of GFP and tandem-dimer GFP (diGFP), we show that the average brightness per particle is proportional to the fraction of dimer present. We further adapted this methodology for its application in living cells, and we were able to distinguish GFP, diGFP, as well as ligand-induced dimerization of FKBP12 (FK506 binding protein 12)-GFP. While other analysis methods have only sporadically been used to study dimerization in living cells and may be prone to errors, this paper provides a robust approach for the investigation of any cytosolic protein using single-color fluorescence fluctuation spectroscopy.


Asunto(s)
Multimerización de Proteína/fisiología , Proteínas/metabolismo , Células Cultivadas , Citosol/metabolismo , Dictyostelium/metabolismo , Difusión , Dimerización , Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Ligandos , Fotones , Espectrometría de Fluorescencia/métodos
6.
J Exp Bot ; 71(3): 837-849, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31665494

RESUMEN

Polarized exocytosis is essential for plant development and defence. The exocyst, an octameric protein complex that tethers exocytotic vesicles to the plasma membrane, targets exocytosis. Upon pathogen attack, secreted materials form papillae to halt pathogen penetration. To determine if the exocyst is directly involved in targeting exocytosis to infection sites, information about its localization is instrumental. Here, we investigated exocyst subunit localization in the moss Physcomitrella patens upon pathogen attack and infection by Phytophthora capsici. Time-gated confocal microscopy was used to eliminate autofluorescence of deposited material around infection sites, allowing the visualization of the subcellular localization of exocyst subunits and of v-SNARE Vamp72A1-labelled exocytotic vesicles during infection. This showed that exocyst subunits Sec3a, Sec5b, Sec5d, and Sec6 accumulated at sites of attempted pathogen penetration. Upon pathogen invasion, the exocyst subunits accumulated on the membrane surrounding papilla-like structures and hyphal encasements. Vamp72A1-labelled vesicles were found to localize in the cytoplasm around infection sites. The re-localization of exocyst subunits to infection sites suggests that the exocyst is directly involved in facilitating polarized exocytosis during pathogenesis.


Asunto(s)
Bryopsida/metabolismo , Exocitosis , Interacciones Huésped-Parásitos , Microscopía Confocal/métodos , Phytophthora/fisiología , Bryopsida/microbiología
7.
Langmuir ; 36(29): 8494-8502, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32598154

RESUMEN

Encapsulation of charged proteins into complex coacervate core micelles (C3Ms) can be accomplished by mixing them with oppositely charged diblock copolymers. However, these micelles tend to disintegrate at high ionic strength. Previous research showed that the addition of a homopolymer with the same charge sign as the protein improved the stability of protein-containing C3Ms. In this research, we used fluorescence correlation spectroscopy (FCS) and dynamic light scattering (DLS) to study how the addition of the homopolymer affects the encapsulation efficiency and salt stability of the micelles. We studied the encapsulation of laccase spore coat protein A (CotA), a multicopper oxidase, using a strong cationic-neutral diblock copolymer, poly(N-methyl-2-vinyl-pyridinium iodide)-block-poly(ethylene oxide) (PM2VP128-b-PEO477), and a negatively charged homopolymer, poly(4-styrenesulfonate) (PSS215). DLS indeed showed an improved stability of this three-component C3M system against the addition of salt compared to a two-component system. Remarkably, FCS showed that the release of CotA from a three-component C3M system occurred at a lower salt concentration and over a narrower concentration range than the dissociation of C3Ms. In conclusion, although the addition of the homopolymer to the system leads to micelles with a higher salt stability, CotA is excluded from the C3Ms already at lower ionic strengths because the homopolymer acts as a competitor of the enzyme for encapsulation.


Asunto(s)
Micelas , Polietilenglicoles , Cationes , Polímeros , Espectrometría de Fluorescencia
8.
Plant Physiol ; 178(3): 1310-1331, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30194238

RESUMEN

The intracellular immune receptor Rx1 of potato (Solanum tuberosum), which confers effector-triggered immunity to Potato virus X, consists of a central nucleotide-binding domain (NB-ARC) flanked by a carboxyl-terminal leucine-rich repeat (LRR) domain and an amino-terminal coiled-coil (CC) domain. Rx1 activity is strictly regulated by interdomain interactions between the NB-ARC and LRR, but the contribution of the CC domain in regulating Rx1 activity or immune signaling is not fully understood. Therefore, we used a structure-informed approach to investigate the role of the CC domain in Rx1 functionality. Targeted mutagenesis of CC surface residues revealed separate regions required for the intramolecular and intermolecular interaction of the CC with the NB-ARC-LRR and the cofactor Ran GTPase-activating protein2 (RanGAP2), respectively. None of the mutant Rx1 proteins was constitutively active, indicating that the CC does not contribute to the autoinhibition of Rx1 activity. Instead, the CC domain acted as a modulator of downstream responses involved in effector-triggered immunity. Systematic disruption of the hydrophobic interface between the four helices of the CC enabled the uncoupling of cell death and disease resistance responses. Moreover, a strong dominant negative effect on Rx1-mediated resistance and cell death was observed upon coexpression of the CC alone with full-length Rx1 protein, which depended on the RanGAP2-binding surface of the CC. Surprisingly, coexpression of the N-terminal half of the CC enhanced Rx1-mediated resistance, which further indicated that the CC functions as a scaffold for downstream components involved in the modulation of disease resistance or cell death signaling.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Enfermedades de las Plantas/inmunología , Potexvirus/inmunología , Receptores Inmunológicos/metabolismo , Transducción de Señal , Solanum tuberosum/inmunología , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Dominios Proteicos , Receptores Inmunológicos/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/virología
9.
Genes Dev ; 25(1): 89-99, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21205868

RESUMEN

In bacteria that divide by binary fission, cell division starts with the polymerization of the tubulin homolog FtsZ at mid-cell to form a cell division scaffold (the Z ring), followed by recruitment of the other divisome components. The current view of bacterial cell division control starts from the principle of negative checkpoints that prevent incorrect Z-ring positioning. Here we provide evidence of positive control of cell division during sporulation of Streptomyces, via the direct recruitment of FtsZ by the membrane-associated divisome component SsgB. In vitro studies demonstrated that SsgB promotes the polymerization of FtsZ. The interactions are shown in vivo by time-lapse imaging and Förster resonance energy transfer and fluorescence lifetime imaging microscopy (FRET-FLIM), and are corroborated independently via two-hybrid studies. As determined by fluorescence recovery after photobleaching (FRAP), the turnover of FtsZ protofilaments increased strongly at the time of Z-ring formation. The surprising positive control of Z-ring formation by SsgB implies the evolution of an entirely new way of Z-ring control, which may be explained by the absence of a mid-cell reference point in the long multinucleoid hyphae. In turn, the localization of SsgB is mediated through the orthologous SsgA, and premature expression of the latter is sufficient to directly activate multiple Z-ring formation and hyperdivision at early stages of the Streptomyces cell cycle.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Streptomyces coelicolor/citología , Streptomyces coelicolor/metabolismo , Proteínas Bacterianas/ultraestructura , División Celular/fisiología , Proteínas del Citoesqueleto/ultraestructura , Polimerizacion , Transporte de Proteínas
10.
J Lipid Res ; 59(3): 531-541, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29326160

RESUMEN

Elaborate control mechanisms of intracellular triacylglycerol (TAG) breakdown are critically involved in the maintenance of energy homeostasis. Hypoxia-inducible lipid droplet-associated protein (HILPDA)/hypoxia-inducible gene-2 (Hig-2) has been shown to affect intracellular TAG levels, yet, the underlying molecular mechanisms are unclear. Here, we show that HILPDA inhibits adipose triglyceride lipase (ATGL), the enzyme catalyzing the first step of intracellular TAG hydrolysis. HILPDA shares structural similarity with G0/G1 switch gene 2 (G0S2), an established inhibitor of ATGL. HILPDA inhibits ATGL activity in a dose-dependent manner with an IC50 value of ∼2 µM. ATGL inhibition depends on the direct physical interaction of both proteins and involves the N-terminal hydrophobic region of HILPDA and the N-terminal patatin domain-containing segment of ATGL. Finally, confocal microscopy combined with Förster resonance energy transfer-fluorescence lifetime imaging microscopy analysis indicated that HILPDA and ATGL colocalize and physically interact intracellularly. These findings provide a rational biochemical explanation for the tissue-specific increased TAG accumulation in HILPDA-overexpressing transgenic mouse models.


Asunto(s)
Adipocitos/enzimología , Tejido Adiposo/enzimología , Lipasa/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Triglicéridos/metabolismo , Humanos , Lipasa/metabolismo
11.
Appl Environ Microbiol ; 84(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30054364

RESUMEN

Eat1 is a recently discovered alcohol acetyltransferase responsible for bulk ethyl acetate production in yeasts such as Wickerhamomyces anomalus and Kluyveromyces lactis These yeasts have the potential to become efficient bio-based ethyl acetate producers. However, some fundamental features of Eat1 are still not understood, which hampers the rational engineering of efficient production strains. The cellular location of Eat1 in yeast is one of these features. To reveal its location, Eat1 was fused with yeast-enhanced green fluorescent protein (yEGFP) to allow intracellular tracking. Despite the current assumption that bulk ethyl acetate production occurs in the yeast cytosol, most of Eat1 localized to the mitochondria of Kluyveromyces lactis CBS 2359 Δku80 We then compared five bulk ethyl acetate-producing yeasts in iron-limited chemostats with glucose as the carbon source. All yeasts produced ethyl acetate under these conditions. This strongly suggests that the mechanism and location of bulk ethyl acetate synthesis are similar in these yeast strains. Furthermore, an in silico analysis showed that Eat1 proteins from various yeasts were mostly predicted as mitochondrial. Altogether, it is concluded that Eat1-catalyzed ethyl acetate production occurs in yeast mitochondria. This study has added new insights into bulk ethyl acetate synthesis in yeast, which is relevant for developing efficient production strains.IMPORTANCE Ethyl acetate is a common bulk chemical that is currently produced from petrochemical sources. Several Eat1-containing yeast strains naturally produce large amounts of ethyl acetate and are potential cell factories for the production of bio-based ethyl acetate. Rational design of the underlying metabolic pathways may result in improved production strains, but it requires fundamental knowledge on the function of Eat1. A key feature is the location of Eat1 in the yeast cell. The precursors for ethyl acetate synthesis can be produced in multiple cellular compartments through different metabolic pathways. The location of Eat1 determines the relevance of each pathway, which will provide future targets for the metabolic engineering of bulk ethyl acetate production in yeast.


Asunto(s)
Proteínas Fúngicas/metabolismo , Kluyveromyces/enzimología , Mitocondrias/enzimología , Proteínas/metabolismo , Acetatos/metabolismo , Proteínas Fúngicas/genética , Kluyveromyces/genética , Mitocondrias/genética , Transporte de Proteínas , Proteínas/genética , Levaduras/enzimología , Levaduras/genética , Levaduras/metabolismo
12.
Langmuir ; 34(40): 12083-12092, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30212214

RESUMEN

The encapsulation of proteins into complex coacervate core micelles (C3Ms) is of potential interest for a wide range of applications. To address the stability and dynamic properties of these polyelectrolyte complexes, combinations of cyan, yellow, and blue fluorescent proteins were encapsulated with cationic-neutral diblock copolymer poly(2-methyl-vinyl-pyridinium)128- b-poly(ethylene-oxide)477. Förster resonance energy transfer (FRET) allowed us to determine the kinetics of C3M formation and of protein exchange between C3Ms. Both processes follow first-order kinetics with relaxation times of ±100 s at low ionic strength ( I = 2.5 mM). Stability studies revealed that 50% of FRET was lost at I = 20 mM, pointing to the disintegration of the C3Ms. On the basis of experimental and theoretical considerations, we propose that C3Ms relax to their final state by association and dissociation of near-neutral soluble protein-polymer complexes. To obtain protein-containing C3Ms suitable for applications, it is necessary to improve the rigidity and salt stability of these complexes.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Micelas , Polietilenglicoles/química , Polivinilos/química , Transferencia Resonante de Energía de Fluorescencia , Cinética , Modelos Químicos , Cloruro de Sodio/química , Termodinámica
13.
Phys Chem Chem Phys ; 20(10): 7059-7072, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29473921

RESUMEN

Flavodoxins have a protein topology that can be traced back to the universal ancestor of the three kingdoms of life. Proteins with this type of architecture tend to temporarily misfold during unassisted folding to their native state and form intermediates. Several of these intermediate species are molten globules (MGs), which are characterized by a substantial amount of secondary structure, yet without the tertiary side-chain packing of natively folded proteins. An off-pathway MG is formed at physiological ionic strength in the case of the F44Y variant of Azotobacter vinelandii apoflavodoxin (i.e., flavodoxin without flavin mononucleotide (FMN)). Here, we show that at this condition actually two folding species of this apoprotein co-exist at equilibrium. These species were detected by using a combination of FMN fluorescence quenching upon cofactor binding to the apoprotein and of polarized time-resolved tryptophan fluorescence spectroscopy. Besides the off-pathway MG, we observe the simultaneous presence of an on-pathway folding intermediate, which is native-like. Presence of concurrent intermediates at physiological ionic strength enables future exploration of how aspects of the cellular environment, like for example involvement of chaperones, affect these species.


Asunto(s)
Apoproteínas/química , Flavodoxina/química , Pliegue de Proteína , Azotobacter vinelandii/química , Sitios de Unión , Cinética , Modelos Moleculares , Concentración Osmolar , Unión Proteica , Estructura Secundaria de Proteína , Termodinámica , Triptófano/química
14.
PLoS Genet ; 11(7): e1005373, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26197346

RESUMEN

Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins characterized by the presence of two domains of unknown function 26 (DUF26) in their ectodomain. The CRKs form one of the largest groups of receptor-like protein kinases in plants, but their biological functions have so far remained largely uncharacterized. We conducted a large-scale phenotyping approach of a nearly complete crk T-DNA insertion line collection showing that CRKs control important aspects of plant development and stress adaptation in response to biotic and abiotic stimuli in a non-redundant fashion. In particular, the analysis of reactive oxygen species (ROS)-related stress responses, such as regulation of the stomatal aperture, suggests that CRKs participate in ROS/redox signalling and sensing. CRKs play general and fine-tuning roles in the regulation of stomatal closure induced by microbial and abiotic cues. Despite their great number and high similarity, large-scale phenotyping identified specific functions in diverse processes for many CRKs and indicated that CRK2 and CRK5 play predominant roles in growth regulation and stress adaptation, respectively. As a whole, the CRKs contribute to specificity in ROS signalling. Individual CRKs control distinct responses in an antagonistic fashion suggesting future potential for using CRKs in genetic approaches to improve plant performance and stress tolerance.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Estrés Oxidativo/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Ascomicetos/inmunología , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas Serina-Treonina Quinasas/genética , Pseudomonas syringae/inmunología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Xantina Oxidasa/metabolismo
15.
Biochim Biophys Acta Bioenerg ; 1858(3): 259-265, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28095301

RESUMEN

Oxygenic photosynthesis is driven by photosystems I (PSI) and II (PSII). In plants the number of chlorophylls of PSI versus PSII is adjusted to the light irradiance spectrum. On a timescale of days, this is regulated at the level of protein concentration. Instead, on a timescale of minutes, it is regulated by the dynamic association of light-harvesting complex II with either PSI or PSII. Thus far very diverse values have been reported for the PSI/PSII chlorophyll ratio, ranging from 0.54 to 1.4. The methods used require the isolation of chloroplasts and are time consuming. We present a fluorescence lifetime imaging approach that quantifies the PSI/PSII Chl ratio of chloroplasts directly in their natural leaf environment. In wild type Arabidopsis thaliana plants, grown under white light, the PSI/PSII chlorophyll ratio appeared to be 0.99±0.09 at the adaxial side and 0.83±0.05 at the abaxial side of the leaf. When these plants were acclimated to far red light for several days the PSI/PSII chlorophyll ratio decreased by more than a factor of 3 to compensate for the ineffective far red light absorption of PSII. This shows how plants optimize their light-harvesting capacity to the specific light conditions they encounter. Zooming in on single chloroplasts inside the leaf allowed to study the grana/stroma membrane network and their PSI/PSII chlorophyll ratios. The developed method will be useful to study dynamic processes in chloroplasts in intact leaves which involve changes in the grana and the stroma membranes such as state transitions.


Asunto(s)
Clorofila/metabolismo , Cloroplastos/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila/química , Cloroplastos/química , Luz , Oxígeno/química , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema II/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Espectrometría de Fluorescencia
16.
Int J Mol Sci ; 18(7)2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28753915

RESUMEN

Encapsulation of proteins can be beneficial for food and biomedical applications. To study their biophysical properties in complex coacervate core micelles (C3Ms), we previously encapsulated enhanced green fluorescent protein (EGFP) and its monomeric variant, mEGFP, with the cationic-neutral diblock copolymer poly(2-methyl-vinyl-pyridinium)n-b-poly(ethylene-oxide)m (P2MVPn-b-PEOm) as enveloping material. C3Ms with high packaging densities of fluorescent proteins (FPs) were obtained, resulting in a restricted orientational freedom of the protein molecules, influencing their structural and spectral properties. To address the generality of this behavior, we encapsulated seven FPs with P2MVP41-b-PEO205 and P2MVP128-b-PEO477. Dynamic light scattering and fluorescence correlation spectroscopy showed lower encapsulation efficiencies for members of the Anthozoa class (anFPs) than for Hydrozoa FPs derived from Aequorea victoria (avFPs). Far-UV CD spectra of the free FPs showed remarkable differences between avFPs and anFPs, caused by rounder barrel structures for avFPs and more elliptic ones for anFPs. These structural differences, along with the differences in charge distribution, might explain the variations in encapsulation efficiency between avFPs and anFPs. Furthermore, the avFPs remain monomeric in C3Ms with minor spectral and structural changes. In contrast, the encapsulation of anFPs gives rise to decreased quantum yields (monomeric Kusabira Orange 2 (mKO2) and Tag red fluorescent protein (TagRFP)) or to a pKa shift of the chromophore (FP variant mCherry).


Asunto(s)
Antozoos/metabolismo , Proteínas Fluorescentes Verdes/química , Polietilenglicoles/química , Animales , Sistemas de Liberación de Medicamentos , Dispersión Dinámica de Luz , Concentración de Iones de Hidrógeno , Micelas , Modelos Moleculares , Teoría Cuántica , Espectrometría de Fluorescencia
17.
Plant Cell ; 25(9): 3602-14, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24045023

RESUMEN

In contrast with animal-infecting viruses, few known plant viruses contain a lipid envelope, and the processes leading to their membrane envelopment remain largely unknown. Plant viruses with lipid envelopes include viruses of the Bunyaviridae, which obtain their envelope from the Golgi complex. The envelopment process is predominantly dictated by two viral glycoproteins (Gn and Gc) and the viral nucleoprotein (N). During maturation of the plant-infecting bunyavirus Tomato spotted wilt, Gc localizes at endoplasmic reticulum (ER) membranes and becomes ER export competent only upon coexpression with Gn. In the presence of cytosolic N, Gc remains arrested in the ER but changes its distribution from reticular into punctate spots. Here, we show that these areas correspond to ER export sites (ERESs), distinct ER domains where glycoprotein cargo concentrates prior to coat protein II vesicle-mediated transport to the Golgi. Gc concentration at ERES is mediated by an interaction between its cytoplasmic tail (CT) and N. Interestingly, an ER-resident calnexin provided with Gc-CT was similarly recruited to ERES when coexpressed with N. Furthermore, disruption of actin filaments caused the appearance of a larger amount of smaller ERES loaded with N-Gc complexes, suggesting that glycoprotein cargo concentration acts as a trigger for de novo synthesis of ERES.


Asunto(s)
Retículo Endoplásmico/metabolismo , Nicotiana/virología , Orthobunyavirus/fisiología , Enfermedades de las Plantas/virología , Proteínas Virales/metabolismo , Actinas/metabolismo , Calnexina/metabolismo , Citosol/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Genes Reporteros , Glicoproteínas/metabolismo , Aparato de Golgi/metabolismo , Solanum lycopersicum/virología , Modelos Moleculares , Mutación , Proteínas de la Nucleocápside/metabolismo , Nucleoproteínas/metabolismo , Transporte de Proteínas , Nicotiana/citología , Nicotiana/metabolismo
18.
Plant Cell ; 25(11): 4525-43, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24280384

RESUMEN

Apical growth in pollen tubes (PTs) is associated with the presence of tip-focused ion gradients and fluxes, implying polar localization or regulation of the underlying transporters. The molecular identity and regulation of anion transporters in PTs is unknown. Here we report a negative gradient of cytosolic anion concentration focused on the tip, in negative correlation with the cytosolic Ca(2+) concentration. We hypothesized that a possible link between these two ions is based on the presence of Ca(2+)-dependent protein kinases (CPKs). We characterized anion channels and CPK transcripts in PTs and analyzed their localization. Yellow fluorescent protein (YFP) tagging of a homolog of SLOW ANION CHANNEL-ASSOCIATED1 (SLAH3:YFP) was widespread along PTs, but, in accordance with the anion efflux, CPK2/CPK20/CPK17/CPK34:YFP fluorescence was strictly localized at the tip plasma membrane. Expression of SLAH3 with either CPK2 or CPK20 (but not CPK17/CPK34) in Xenopus laevis oocytes elicited S-type anion channel currents. Interaction of SLAH3 with CPK2/CPK20 (but not CPK17/CPK34) was confirmed by Förster-resonance energy transfer fluorescence lifetime microscopy in Arabidopsis thaliana mesophyll protoplasts and bimolecular fluorescence complementation in living PTs. Compared with wild-type PTs, slah3-1 and slah3-2 as well as cpk2-1 cpk20-2 PTs had reduced anion currents. Double mutant cpk2-1 cpk20-2 and slah3-1 PTs had reduced extracellular anion fluxes at the tip. Our studies provide evidence for a Ca(2+)-dependent CPK2/CPK20 regulation of the anion channel SLAH3 to regulate PT growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Canales Iónicos/metabolismo , Tubo Polínico/crecimiento & desarrollo , Proteínas Quinasas/metabolismo , Animales , Aniones/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Citosol/metabolismo , Femenino , Transferencia Resonante de Energía de Fluorescencia , Canales Iónicos/genética , Células del Mesófilo/metabolismo , Mutación , Oocitos/metabolismo , Plantas Modificadas Genéticamente , Tubo Polínico/metabolismo , Proteínas Quinasas/genética , Nicotiana/genética , Nicotiana/metabolismo , Xenopus laevis
19.
Biomacromolecules ; 16(5): 1542-9, 2015 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-25857527

RESUMEN

Protein encapsulation with polymers has a high potential for drug delivery, enzyme protection and stabilization. Formation of such structures can be achieved by the use of polyelectrolytes to generate so-called complex coacervate core micelles (C3Ms). Here, encapsulation of enhanced green fluorescent protein (EGFP) was investigated using a cationic-neutral diblock copolymer of two different sizes: poly(2-methyl-vinyl-pyridinium)41-b-poly(ethylene-oxide)205 and poly(2-methyl-vinyl-pyridinium)128-b-poly(ethylene-oxide)477. Dynamic light scattering and fluorescence correlation spectroscopy (FCS) revealed a preferred micellar composition (PMC) with a positive charge composition of 0.65 for both diblock copolymers and micellar hydrodynamic radii of approximately 34 nm. FCS data show that at the PMC, C3Ms are formed above 100 nM EGFP, independent of polymer length. Mixtures of EGFP and nonfluorescent GFP were used to quantify the amount of GFP molecules per C3M, resulting in approximately 450 GFPs encapsulated per micelle. This study shows that FCS can be successfully applied for the characterization of protein-containing C3Ms.


Asunto(s)
Sistemas de Liberación de Medicamentos , Proteínas Fluorescentes Verdes/química , Polímeros/química , Humanos , Concentración de Iones de Hidrógeno , Micelas , Polietilenglicoles/química
20.
Plant Physiol ; 162(4): 1911-25, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23796795

RESUMEN

The leucine-rich repeat receptor-like kinase BRASSINOSTEROID-INSENSITIVE1 (BRI1) is the main ligand-perceiving receptor for brassinosteroids (BRs) in Arabidopsis (Arabidopsis thaliana). Binding of BRs to the ectodomain of plasma membrane (PM)-located BRI1 receptors initiates an intracellular signal transduction cascade that influences various aspects of plant growth and development. Even though the major components of BR signaling have been revealed and the PM was identified as the main site of BRI1 signaling activity, the very first steps of signal transmission are still elusive. Recently, it was shown that the initiation of BR signal transduction requires the interaction of BRI1 with its SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) coreceptors. In addition, the resolved structure of the BRI1 ectodomain suggested that BRI1-ASSOCIATED KINASE1 [BAK1](SERK3) may constitute a component of the ligand-perceiving receptor complex. Therefore, we investigated the spatial correlation between BRI1 and BAK1(SERK3) in the natural habitat of both leucine-rich repeat receptor-like kinases using comparative colocalization analysis and fluorescence lifetime imaging microscopy. We show that activation of BR signaling by exogenous ligand application resulted in both elevated colocalization between BRI1 and BAK1(SERK3) and an about 50% increase of receptor heterooligomerization in the PM of live Arabidopsis root epidermal cells. However, large populations of BRI1 and BAK1(SERK3) colocalized independently of BRs. Moreover, we could visualize that approximately 7% of the BRI1 PM pool constitutively heterooligomerizes with BAK1(SERK3) in live root cells. We propose that only small populations of PM-located BRI1 and BAK1(SERK3) receptors participate in active BR signaling and that the initiation of downstream signal transduction involves preassembled BRI1-BAK1(SERK3) heterooligomers.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brefeldino A/metabolismo , Brefeldino A/farmacología , Membrana Celular/metabolismo , Microscopía Fluorescente/métodos , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Triazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA