Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mucosal Immunol ; 17(1): 25-40, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37827377

RESUMEN

SARS-CoV-2 infection has been associated with intestinal mucosal barrier damage, leading to microbial and endotoxin translocation, heightened inflammatory responses, and aggravated disease outcomes. This study aimed to investigate the immunological mechanisms associated with impaired intestinal barrier function. We conducted a comprehensive analysis of gut damage and inflammation markers and phenotypic characterization of myeloid and lymphoid populations in the ileum and colon of SARS-CoV-2-exposed macaques during both the acute and resolved infection phases. Our findings revealed a significant accumulation of terminally differentiated and activated CD4+ and CD8+ T cells, along with memory B cells, within the gastrointestinal tract up to 43 days after exposure to SARS-CoV-2. This robust infection-induced immune response was accompanied by a notable depletion of plasmacytoid dendritic cells, myeloid dendritic cells, and macrophages, particularly affecting the colon during the resolved infection phase. Additionally, we identified a population of CX3CR1Low inflammatory macrophages associated with intestinal damage during active viral replication. Elevated levels of immune activation and gut damage markers, and perturbation of macrophage homeostasis, persisted even after the resolution of the infection, suggesting potential long-term clinical sequelae. These findings enhance our understanding of gastrointestinal immune pathology following SARS-CoV-2 infection and provide valuable information for developing and testing medical countermeasures.


Asunto(s)
COVID-19 , Animales , COVID-19/patología , SARS-CoV-2 , Mucosa Intestinal , Inflamación , Primates
2.
NPJ Vaccines ; 9(1): 113, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902327

RESUMEN

The characterization of vaccine distribution to relevant tissues after in vivo administration is critical to understanding their mechanisms of action. Vaccines based on mRNA lipid nanoparticles (LNPs) are now being widely considered against infectious diseases and cancer. Here, we used in vivo imaging approaches to compare the trafficking of two LNP formulations encapsulating mRNA following intramuscular administration: DLin-MC3-DMA (MC3) and the recently developed DOG-IM4. The mRNA formulated in DOG-IM4 LNPs persisted at the injection site, whereas mRNA formulated in MC3 LNPs rapidly migrated to the draining lymph nodes. Furthermore, MC3 LNPs induced the fastest increase in blood neutrophil counts after injection and greater inflammation, as shown by IL-1RA, IL-15, CCL-1, and IL-6 concentrations in nonhuman primate sera. These observations highlight the influence of the nature of the LNP on mRNA vaccine distribution and early immune responses.

3.
Nat Commun ; 14(1): 6224, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803011

RESUMEN

Passive immunization using broadly neutralizing antibodies (bNAbs) is investigated in clinical settings to inhibit HIV-1 acquisition due to the lack of a preventive vaccine. However, bNAbs efficacy against highly infectious cell-associated virus transmission has been overlooked. HIV-1 transmission mediated by infected cells present in body fluids likely dominates infection and aids the virus in evading antibody-based immunity. Here, we show that the anti-N-glycans/V3 loop HIV-1 bNAb 10-1074 formulated for topical vaginal application in a microbicide gel provides significant protection against repeated cell-associated SHIV162P3 vaginal challenge in non-human primates. The treated group has a significantly lower infection rate than the control group, with 5 out of 6 animals fully protected from the acquisition of infection. The findings suggest that mucosal delivery of potent bnAbs may be a promising approach for preventing transmission mediated by infected cells and support the use of anti-HIV-antibody-based strategies as potential microbicides in human clinical trials.


Asunto(s)
Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Femenino , Humanos , Anticuerpos ampliamente neutralizantes , Macaca , Anticuerpos Neutralizantes , Anticuerpos Anti-VIH
4.
Commun Biol ; 5(1): 542, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35661814

RESUMEN

The well documented association between obesity and the severity of SARS-CoV-2 infection raises the question of whether adipose tissue (AT) is impacted during this infection. Using a model of SARS-CoV-2 infection in cynomolgus macaques, we detected the virus within subcutaneous AT (SCAT) but not in visceral AT (VAT) or epicardial AT on day 7 post-infection. We sought to determine the mechanisms responsible for this selective detection and observed higher levels of angiotensin-converting-enzyme-2 mRNA expression in SCAT than in VAT. Lastly, we evaluated the immunological consequences of SARS-CoV-2 infection on AT: both SCAT and VAT T cells showed a drastic reduction in CD69 expression, a standard marker of resident memory T cell in tissue, that is also involved in the migratory and metabolic properties of T cells. Our results demonstrate that in a model of mild infection, SCAT is selectively infected by SARS-CoV-2 although changes in the immune properties of AT are observed in both SCAT and VAT.


Asunto(s)
COVID-19 , SARS-CoV-2 , Tejido Adiposo , Animales , Homeostasis , Linfocitos , Macaca , Grasa Subcutánea/metabolismo
5.
JCI Insight ; 7(14)2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35700051

RESUMEN

Chikungunya virus (CHIKV) is a reemerging mosquito-borne alphavirus responsible for numerous outbreaks. Chikungunya can cause debilitating acute and chronic disease. Thus, the development of a safe and effective CHIKV vaccine is an urgent global health priority. This study evaluated the effectiveness of the live-attenuated CHIKV vaccine VLA1553 against WT CHIKV infection by using passive transfer of sera from vaccinated volunteers to nonhuman primates (NHP) subsequently exposed to WT CHIKV and established a serological surrogate of protection. We demonstrated that human VLA1553 sera transferred to NHPs conferred complete protection from CHIKV viremia and fever after challenge with homologous WT CHIKV. In addition, serum transfer protected animals from other CHIKV-associated clinical symptoms and from CHIKV persistence in tissue. Based on this passive transfer study, a 50% micro-plaque reduction neutralization test titer of ≥ 150 was determined as a surrogate of protection, which was supported by analysis of samples from a seroepidemiological study. In conclusion, considering the unfeasibility of an efficacy trial due to the unpredictability and explosive, rapidly moving nature of chikungunya outbreaks, the definition of a surrogate of protection for VLA1553 is an important step toward vaccine licensure to reduce the medical burden caused by chikungunya.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Animales , Anticuerpos Antivirales , Fiebre Chikungunya/prevención & control , Humanos , Estudios Seroepidemiológicos , Vacunas Atenuadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA