Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 21(10): 2969-74, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21470862

RESUMEN

As part of our drug discovery effort, we identified and developed 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as PLK1 inhibitors. We now report the optimization of this class that led to the identification of NMS-P937, a potent, selective and orally available PLK1 inhibitor. Also, in order to understand the source of PLK1 selectivity, we determined the crystal structure of PLK1 with NMS-P937. The compound was active in vivo in HCT116 xenograft model after oral administration and is presently in Phase I clinical trials evaluation.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Pirazoles/farmacología , Quinazolinas/farmacología , Administración Oral , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Ensayos Clínicos Fase I como Asunto , Concentración 50 Inhibidora , Ratones , Ratones Desnudos , Estructura Molecular , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirazoles/síntesis química , Pirazoles/química , Quinazolinas/síntesis química , Quinazolinas/química , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasa Tipo Polo 1
2.
Biochemistry ; 49(32): 6813-25, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20695522

RESUMEN

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase involved in the development of several human cancers and, as a result, is a recognized target for the development of small-molecule inhibitors for the treatment of ALK-positive malignancies. Here, we present the crystal structures of the unphosphorylated human ALK kinase domain in complex with the ATP competitive ligands PHA-E429 and NVP-TAE684. Analysis of these structures provides valuable information concerning the specific characteristics of the ALK active site as well as giving indications about how to obtain selective ALK inhibitors. In addition, the ALK-KD-PHA-E429 structure led to the identification of a potential regulatory mechanism involving a link made between a short helical segment immediately following the DFG motif and an N-terminal two-stranded beta-sheet. Finally, mapping of the activating mutations associated with neuroblastoma onto our structures may explain the roles these residues have in the activation process.


Asunto(s)
Modelos Moleculares , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/química , Pirimidinas/química , Quinasa de Linfoma Anaplásico , Animales , Línea Celular , Inhibidores Enzimáticos/química , Humanos , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas Receptoras , Spodoptera
3.
Biochemistry ; 41(9): 3018-24, 2002 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-11863440

RESUMEN

L-Aspartate oxidase (Laspo) catalyzes the conversion of L-Asp to iminoaspartate, the first step in the de novo biosynthesis of NAD(+). This bacterial pathway represents a potential drug target since it is absent in mammals. The Laspo R386L mutant was crystallized in the FAD-bound catalytically competent form and its three-dimensional structure determined at 2.5 A resolution in both the native state and in complex with succinate. Comparison of the R386L holoprotein with the wild-type apoenzyme [Mattevi, A., Tedeschi, G., Bacchella, L., Coda, A., Negri, A., and Ronchi, S. (1999) Structure 7, 745-756] reveals that cofactor incorporation leads to the ordering of two polypeptide segments (residues 44-53 and 104-141) and to a 27 degree rotation of the capping domain. This motion results in the formation of the active site cavity, located at the interface between the capping domain and the FAD-binding domain. The structure of the succinate complex indicates that the cavity surface is decorated by two clusters of H-bond donors that anchor the ligand carboxylates. Moreover, Glu121, which is strictly conserved among Laspo sequences, is positioned to interact with the L-Asp alpha-amino group. The architecture of the active site of the Laspo holoenzyme is remarkably similar to that of respiratory fumarate reductases, providing strong evidence for a common mechanism of catalysis in Laspo and flavoproteins of the succinate dehydrogenase/fumarate reductase family. This implies that Laspo is mechanistically distinct from other flavin-dependent amino acid oxidases, such as the prototypical D-amino acid oxidase.


Asunto(s)
Aminoácido Oxidorreductasas/química , Escherichia coli/enzimología , Flavina-Adenina Dinucleótido/química , Aminoácido Oxidorreductasas/metabolismo , Sitios de Unión , Catálisis , Cristalización , Proteínas de Escherichia coli , Flavina-Adenina Dinucleótido/metabolismo , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato , Succinato Deshidrogenasa/química
4.
J Biol Chem ; 277(27): 24579-83, 2002 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-11967268

RESUMEN

The complex iron-sulfur flavoprotein glutamate synthase (GltS) plays a prominent role in ammonia assimilation in bacteria, yeasts, and plants. GltS catalyzes the formation of two molecules of l-glutamate from 2-oxoglutarate and l-glutamine via intramolecular channeling of ammonia. GltS has the impressive ability of synchronizing its distinct catalytic centers to avoid wasteful consumption of l-glutamine. We have determined the crystal structure of the ferredoxin-dependent GltS in several ligation and redox states. The structures reveal the crucial elements in the synchronization between the glutaminase site and the 2-iminoglutarate reduction site. The structural data combined with the catalytic properties of GltS indicate that binding of ferredoxin and 2-oxoglutarate to the FMN-binding domain of GltS induce a conformational change in the loop connecting the two catalytic centers. The rearrangement induces a shift in the catalytic elements of the amidotransferase domain, such that it becomes activated. This machinery, over a distance of more than 30 A, controls the ability of the enzyme to bind and hydrolyze the ammonia-donating substrate l-glutamine.


Asunto(s)
Aminoácido Oxidorreductasas/química , Glutamato Sintasa/química , Aminoácido Oxidorreductasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Cianobacterias/enzimología , Ferredoxinas/metabolismo , Glutamato Sintasa/metabolismo , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica
5.
Biochemistry ; 41(28): 8807-18, 2002 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-12102623

RESUMEN

FprA is a mycobacterial oxidoreductase that catalyzes the transfer of reducing equivalents from NADPH to a protein acceptor. We determined the atomic resolution structure of FprA in the oxidized (1.05 A resolution) and NADPH-reduced (1.25 A resolution) forms. The comparison of these FprA structures with that of bovine adrenodoxin reductase showed no significant overall differences. Hence, these enzymes, which belong to the structural family of the disulfide oxidoreductases, are structurally conserved in very distant organisms such as mycobacteria and mammals. Despite the conservation of the overall fold, the details of the active site of FprA show some peculiar features. In the oxidized enzyme complex, the bound NADP+ exhibits a covalent modification, which has been identified as an oxygen atom linked through a carbonylic bond to the reactive C4 atom of the nicotinamide ring. Mass spectrometry has confirmed this assignment. This NADP+ derivative is likely to form by oxidation of the NADP+ adduct resulting from nucleophilic attack by an active-site water molecule. A Glu-His pair is well positioned to activate the attacking water through a mechanism analogous to that of the catalytic triad in serine proteases. The NADP+ nicotinamide ring exhibits the unusual cis conformation, which may favor derivative formation. The physiological significance of this reaction is presently unknown. However, it could assist with drug-design studies in that the modified NADP+ could serve as a lead compound for the development of specific inhibitors.


Asunto(s)
Mycobacterium tuberculosis/enzimología , NADH NADPH Oxidorreductasas/química , NADP/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Dimerización , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , NADH NADPH Oxidorreductasas/metabolismo , NADP/química , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA