Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872384

RESUMEN

PURPOSE: To develop and validate a highly efficient motion compensated free-breathing isotropic resolution 3D whole-heart joint T1/T2 mapping sequence with anatomical water/fat imaging at 0.55 T. METHODS: The proposed sequence takes advantage of shorter T1 at 0.55 T to acquire three interleaved water/fat volumes with inversion-recovery preparation, no preparation, and T2 preparation, respectively. Image navigators were used to facilitate nonrigid motion-compensated image reconstruction. T1 and T2 maps were jointly calculated by a dictionary matching method. Validations were performed with simulation, phantom, and in vivo experiments on 10 healthy volunteers and 1 patient. The performance of the proposed sequence was compared with conventional 2D mapping sequences including modified Look-Locker inversion recovery and T2-prepared balanced steady-SSFP sequence. RESULTS: The proposed sequence has a good T1 and T2 encoding sensitivity in simulation, and excellent agreement with spin-echo reference T1 and T2 values was observed in a standardized T1/T2 phantom (R2 = 0.99). In vivo experiments provided good-quality co-registered 3D whole-heart T1 and T2 maps with 2-mm isotropic resolution in a short scan time of about 7 min. For healthy volunteers, left-ventricle T1 mean and SD measured by the proposed sequence were both comparable with those of modified Look-Locker inversion recovery (640 ± 35 vs. 630 ± 25 ms [p = 0.44] and 49.9 ± 9.3 vs. 54.4 ± 20.5 ms [p = 0.42]), whereas left-ventricle T2 mean and SD measured by the proposed sequence were both slightly lower than those of T2-prepared balanced SSFP (53.8 ± 5.5 vs. 58.6 ± 3.3 ms [p < 0.01] and 5.2 ± 0.9 vs. 6.1 ± 0.8 ms [p = 0.03]). Myocardial T1 and T2 in the patient measured by the proposed sequence were in good agreement with conventional 2D sequences and late gadolinium enhancement. CONCLUSION: The proposed sequence simultaneously acquires 3D whole-heart T1 and T2 mapping with anatomical water/fat imaging at 0.55 T in a fast and efficient 7-min scan. Further investigation in patients with cardiovascular disease is now warranted.

2.
Magn Reson Med ; 91(5): 1951-1964, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38181169

RESUMEN

PURPOSE: Simultaneous PET-MRI improves inflammatory cardiac disease diagnosis. However, challenges persist in respiratory motion and mis-registration between free-breathing 3D PET and 2D breath-held MR images. We propose a free-breathing non-rigid motion-compensated 3D T2 -mapping sequence enabling whole-heart myocardial tissue characterization in a hybrid 3T PET-MR system and provides non-rigid respiratory motion fields to correct also simultaneously acquired PET data. METHODS: Free-breathing 3D whole-heart T2 -mapping was implemented on a hybrid 3T PET-MRI system. Three datasets were acquired with different T2 -preparation modules (0, 28, 55 ms) using 3-fold undersampled variable-density Cartesian trajectory. Respiratory motion was estimated via virtual 3D image navigators, enabling multi-contrast non-rigid motion-corrected MR reconstruction. T2 -maps were computed using dictionary-matching. Approach was tested in phantom, 8 healthy subjects, 14 MR only and 2 PET-MR patients with suspected cardiac disease and compared with spin echo reference (phantom) and clinical 2D T2 -mapping (in-vivo). RESULTS: Phantom results show a high correlation (R2 = 0.996) between proposed approach and gold standard 2D T2 mapping. In-vivo 3D T2 -mapping average values in healthy subjects (39.0 ± 1.4 ms) and patients (healthy tissue) (39.1 ± 1.4 ms) agree with conventional 2D T2 -mapping (healthy = 38.6 ± 1.2 ms, patients = 40.3 ± 1.7 ms). Bland-Altman analysis reveals bias of 1.8 ms and 95% limits of agreement (LOA) of -2.4-6 ms for healthy subjects, and bias of 1.3 ms and 95% LOA of -1.9 to 4.6 ms for patients. CONCLUSION: Validated efficient 3D whole-heart T2 -mapping at hybrid 3T PET-MRI provides myocardial inflammation characterization and non-rigid respiratory motion fields for simultaneous PET data correction. Comparable T2 values were achieved with both 3D and 2D methods. Improved image quality was observed in the PET images after MR-based motion correction.


Asunto(s)
Miocarditis , Miocardio , Humanos , Imagen por Resonancia Magnética , Movimiento (Física) , Imagenología Tridimensional/métodos , Tomografía de Emisión de Positrones , Corazón/diagnóstico por imagen , Fantasmas de Imagen
3.
J Cardiovasc Electrophysiol ; 35(2): 258-266, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38065834

RESUMEN

BACKGROUND: Incomplete atrial lesions resulting in pulmonary vein-left atrium reconnection after pulmonary vein antrum isolation (PVAI), are related to atrial fibrillation (AF) recurrence. Unfortunately, during the PVAI procedure, fluoroscopy and electroanatomic mapping cannot accurately determine the location and size of the ablation lesions in the atrial wall and this can result in incomplete PVAI lesions (PVAI-L) after radiofrequency catheter ablation (RFCA). AIM: We seek to evaluate whether cardiac magnetic resonance (CMR), immediately after RFCA of AF, can identify PVAI-L by characterizing the left atrial tissue. METHODS: Ten patients (63.1 ± 5.7 years old, 80% male) receiving a RFCA for paroxysmal AF underwent a CMR before (<1 week) and after (<1 h) the PVAI. Two-dimensional dark-blood T2-weighted short tau inversion recovery (DB-STIR), Three-dimensional inversion-recovery prepared long inversion time (3D-TWILITE) and three-dimensional late gadolinium enhancement (3D-LGE) images were performed to visualize PVAI-L. RESULTS: The PVAI-L was visible in 10 patients (100%) using 3D-TWILITE and 3D-LGE. Conversely, On DB-STIR, the ablation core of the PAVI-L could not be identified because of a diffuse high signal of the atrial wall post-PVAI. Microvascular obstruction was identified in 7 (70%) patients using 3D-LGE. CONCLUSION: CMR can visualize PVAI-L immediately after the RFCA of AF even without the use of contrast agents. Future studies are needed to understand if the use of CMR for PVAI-L detection after RFCA can improve the results of ablation procedures.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Venas Pulmonares , Humanos , Masculino , Persona de Mediana Edad , Anciano , Femenino , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/cirugía , Medios de Contraste , Resultado del Tratamiento , Gadolinio , Espectroscopía de Resonancia Magnética , Ablación por Catéter/efectos adversos , Ablación por Catéter/métodos , Venas Pulmonares/diagnóstico por imagen , Venas Pulmonares/cirugía
4.
Eur Radiol ; 34(4): 2689-2698, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37804340

RESUMEN

OBJECTIVES: Visualizing left atrial anatomy including the pulmonary veins (PVs) is important for planning the procedure of pulmonary vein isolation with ablation in patients with atrial fibrillation (AF). The aims of our study are to investigate the feasibility of the 3D whole-heart bright-blood and black-blood phase-sensitive (BOOST) inversion recovery sequence in patients with AF scheduled for ablation or electro-cardioversion, and to analyze the correlation between image quality and heart rate and rhythm of patients. METHODS: BOOST was performed for assessing PVs both with T2 preparation pre-pulse (T2prep) and magnetization transfer preparation (MTC) in 45 patients with paroxysmal or permanent AF scheduled for ablation or electro-cardioversion. Image quality analyses were performed by two independent observers. Qualitative assessment was made using the Likert scale; for quantitative analysis, signal to noise ratios (SNR) and contrast to noise ratios (CNR) were calculated for each PV. Heart rate and rhythm were analyzed based on standard 12-lead ECGs. RESULTS: All MTC-BOOST acquisitions achieved diagnostic quality in the PVs, while a significant proportion of T2prep-BOOST images were not suitable for assessing PVs. SNR and CNR values of the MTC-BOOST bright-blood images were higher if patients had sinus rhythm. We found a significant or nearly significant negative correlation between heart rate and the SNR and CNR values of MTC-BOOST bright-blood images. CONCLUSION: 3D whole-heart MTC-BOOST bright-blood imaging is suitable for visualizing the PVs in patients with AF, producing diagnostic image quality in 100% of cases. However, image quality was influenced by heart rate and rhythm. CLINICAL RELEVANCE STATEMENT: The novel 3D whole-heart BOOST CMR sequence needs no contrast administration and is performed during free-breathing; therefore, it is easy to use for a wide range of patients and is suitable for visualizing the PVs in patients with AF. KEY POINTS: • The applicability of the novel 3D whole-heart bright-blood and black-blood phase-sensitive sequence to pulmonary vein imaging in clinical practice is unknown. • Magnetization transfer-bright-blood and black-blood phase-sensitive imaging is suitable for visualizing the pulmonary veins in patients with atrial fibrillation with excellent or good image quality. • Bright-blood and black-blood phase-sensitive cardiac magnetic resonance sequence is easy to use for a wide range of patients as it needs no contrast administration and is performed during free-breathing.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Venas Pulmonares , Humanos , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/cirugía , Estudios de Factibilidad , Atrios Cardíacos/diagnóstico por imagen , Electrocardiografía , Imagen por Resonancia Magnética , Venas Pulmonares/diagnóstico por imagen , Venas Pulmonares/cirugía , Ablación por Catéter/métodos
5.
J Cardiovasc Magn Reson ; 26(1): 101039, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38521391

RESUMEN

BACKGROUND: Cardiovascular magnetic resonance (CMR) is an important imaging modality for the assessment and management of adult patients with congenital heart disease (CHD). However, conventional techniques for three-dimensional (3D) whole-heart acquisition involve long and unpredictable scan times and methods that accelerate scans via k-space undersampling often rely on long iterative reconstructions. Deep-learning-based reconstruction methods have recently attracted much interest due to their capacity to provide fast reconstructions while often outperforming existing state-of-the-art methods. In this study, we sought to adapt and validate a non-rigid motion-corrected model-based deep learning (MoCo-MoDL) reconstruction framework for 3D whole-heart MRI in a CHD patient cohort. METHODS: The previously proposed deep-learning reconstruction framework MoCo-MoDL, which incorporates a non-rigid motion-estimation network and a denoising regularization network within an unrolled iterative reconstruction, was trained in an end-to-end manner using 39 CHD patient datasets. Once trained, the framework was evaluated in eight CHD patient datasets acquired with seven-fold prospective undersampling. Reconstruction quality was compared with the state-of-the-art non-rigid motion-corrected patch-based low-rank reconstruction method (NR-PROST) and against reference images (acquired with three-or-four-fold undersampling and reconstructed with NR-PROST). RESULTS: Seven-fold undersampled scan times were 2.1 ± 0.3 minutes and reconstruction times were ∼30 seconds, approximately 240 times faster than an NR-PROST reconstruction. Image quality comparable to the reference images was achieved using the proposed MoCo-MoDL framework, with no statistically significant differences found in any of the assessed quantitative or qualitative image quality measures. Additionally, expert image quality scores indicated the MoCo-MoDL reconstructions were consistently of a higher quality than the NR-PROST reconstructions of the same data, with the differences in 12 of the 22 scores measured for individual vascular structures found to be statistically significant. CONCLUSION: The MoCo-MoDL framework was applied to an adult CHD patient cohort, achieving good quality 3D whole-heart images from ∼2-minute scans with reconstruction times of ∼30 seconds.


Asunto(s)
Aprendizaje Profundo , Cardiopatías Congénitas , Interpretación de Imagen Asistida por Computador , Valor Predictivo de las Pruebas , Humanos , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/fisiopatología , Reproducibilidad de los Resultados , Adulto , Masculino , Femenino , Adulto Joven , Imagenología Tridimensional , Factores de Tiempo , Imagen por Resonancia Magnética , Imagen por Resonancia Cinemagnética
6.
J Cardiovasc Magn Reson ; 26(1): 100008, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38194762

RESUMEN

BACKGROUND: Three dimensional, whole-heart (3DWH) MRI is an established non-invasive imaging modality in patients with congenital heart disease (CHD) for the diagnosis of cardiovascular morphology and for clinical decision making. Current techniques utilise diaphragmatic navigation (dNAV) for respiratory motion correction and gating and are frequently limited by long acquisition times. This study proposes and evaluates the diagnostic performance of a respiratory gating-free framework, which considers respiratory image-based navigation (iNAV), and highly accelerated variable density Cartesian sampling in concert with non-rigid motion correction and low-rank patch-based denoising (iNAV-3DWH-PROST). The method is compared to the clinical dNAV-3DWH sequence in adult patients with CHD. METHODS: In this prospective single center study, adult patients with CHD who underwent the clinical dNAV-3DWH MRI were also scanned with the iNAV-3DWH-PROST. Diagnostic confidence (4-point Likert scale) and diagnostic accuracy for common cardiovascular lesions was assessed by three readers. Scan times and diagnostic confidence were compared using the Wilcoxon-signed rank test. Co-axial vascular dimensions at three anatomic landmarks were measured, and agreement between the research and the corresponding clinical sequence was assessed with Bland-Altman analysis. RESULTS: The study included 60 participants (mean age ± [SD]: 33 ± 14 years; 36 men). The mean acquisition time of iNAV-3DWH-PROST was significantly lower compared with the conventional clinical sequence (3.1 ± 0.9 min vs 13.9 ± 3.9 min, p < 0.0001). Diagnostic confidence was higher for the iNAV-3DWH-PROST sequence compared with the clinical sequence (3.9 ± 0.2 vs 3.4 ± 0.8, p < 0.001), however there was no significant difference in diagnostic accuracy. Narrow limits of agreement and mean bias less than 0.08 cm were found between the research and the clinical vascular measurements. CONCLUSIONS: The iNAV-3DWH-PROST framework provides efficient, high quality and robust 3D whole-heart imaging in significantly shorter scan time compared to the standard clinical sequence.


Asunto(s)
Cardiopatías Congénitas , Imagenología Tridimensional , Valor Predictivo de las Pruebas , Humanos , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/fisiopatología , Masculino , Adulto , Estudios Prospectivos , Femenino , Reproducibilidad de los Resultados , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Respiración
7.
Radiology ; 306(1): 150-159, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36040337

RESUMEN

Background Liver MR fingerprinting (MRF) enables simultaneous quantification of T1, T2, T2*, and proton density fat fraction (PDFF) maps in single breath-hold acquisitions. Histopathologic correlation studies are desired for its clinical use. Purpose To compare liver MRF-derived metrics with separate reference quantitative MRI in participants with diffuse liver disease, evaluate scan-rescan repeatability of liver MRF, and validate MRF-derived measurements for histologic grading of liver biopsies. Materials and Methods This prospective study included participants with diffuse liver disease undergoing MRI from July 2021 to January 2022. Participants underwent two-dimensional single-section liver MRF and separate reference quantitative MRI. Linear regression, Bland-Altman plots, and coefficients of variation were used to assess the bias and repeatability of liver MRF measurements. For participants undergoing liver biopsy, the association between mapping and histologic grading was evaluated by using the Spearman correlation coefficient. Results Fifty-six participants (mean age, 59 years ± 15 [SD]; 32 women) were included to compare mapping techniques and 23 participants were evaluated with liver biopsy (mean age, 52.7 years ± 12.7; 14 women). The linearity of MRF with reference measurements in participants with diffuse liver disease (R2 value) for T1, T2, T2*, and PDFF maps was 0.86, 0.88, 0.54, and 0.99, respectively. The overall coefficients of variation for repeatability in the liver were 3.2%, 5.5%, 7.1%, and 4.6% for T1, T2, T2*, and PDFF maps, respectively. MRF-derived metrics showed high diagnostic performance in differentiating moderate or severe changes from mild or no changes (area under the receiver operating characteristic curve for fibrosis, inflammation, steatosis, and siderosis: 0.62 [95% CI: 0.52, 0.62], 0.92 [95% CI: 0.88, 0.92], 0.97 [95% CI: 0.96, 0.97], and 0.74 [95% CI: 0.57, 0.74], respectively). Conclusion Liver MR fingerprinting provided repeatable T1, T2, T2*, and proton density fat fraction maps in high agreement with reference quantitative mapping and may correlate with pathologic grades in participants with diffuse liver disease. © RSNA, 2022 Online supplemental material is available for this article.


Asunto(s)
Hígado Graso , Protones , Humanos , Femenino , Persona de Mediana Edad , Correlación de Datos , Estudios Prospectivos , Hígado/patología , Imagen por Resonancia Magnética/métodos , Hígado Graso/patología
8.
Magn Reson Med ; 89(1): 217-232, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36198014

RESUMEN

PURPOSE: To introduce non-rigid cardiac motion correction into a novel free-running framework for the simultaneous acquisition of 3D whole-heart myocardial T 1 $$ {T}_1 $$ and T 2 $$ {T}_2 $$ maps and cine images, enabling a ∼ $$ \sim $$ 3-min scan. METHODS: Data were acquired using a free-running 3D golden-angle radial readout interleaved with inversion recovery and T 2 $$ {T}_2 $$ -preparation pulses. After correction for translational respiratory motion, non-rigid cardiac-motion-corrected reconstruction with dictionary-based low-rank compression and patch-based regularization enabled 3D whole-heart T 1 $$ {T}_1 $$ and T 2 $$ {T}_2 $$ mapping at any given cardiac phase as well as whole-heart cardiac cine imaging. The framework was validated and compared with established methods in 11 healthy subjects. RESULTS: Good quality 3D T 1 $$ {T}_1 $$ and T 2 $$ {T}_2 $$ maps and cine images were reconstructed for all subjects. Septal T 1 $$ {T}_1 $$ values using the proposed approach ( 1200 ± 50 $$ 1200\pm 50 $$ ms) were higher than those from a 2D MOLLI sequence ( 1063 ± 33 $$ 1063\pm 33 $$ ms), which is known to underestimate T 1 $$ {T}_1 $$ , while T 2 $$ {T}_2 $$ values from the proposed approach ( 51 ± 4 $$ 51\pm 4 $$ ms) were in good agreement with those from a 2D GraSE sequence ( 51 ± 2 $$ 51\pm 2 $$ ms). CONCLUSION: The proposed technique provides 3D T 1 $$ {T}_1 $$ and T 2 $$ {T}_2 $$ maps and cine images with isotropic spatial resolution in a single ∼ $$ \sim $$ 3.3-min scan.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Cinemagnética , Humanos , Imagen por Resonancia Cinemagnética/métodos , Imagenología Tridimensional/métodos , Corazón/diagnóstico por imagen , Miocardio , Movimiento (Física) , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética , Fantasmas de Imagen
9.
Magn Reson Med ; 90(1): 329-342, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36877139

RESUMEN

PURPOSE: To develop an open-source, high-performance, easy-to-use, extensible, cross-platform, and general MRI simulation framework (Koma). METHODS: Koma was developed using the Julia programming language. Like other MRI simulators, it solves the Bloch equations with CPU and GPU parallelization. The inputs are the scanner parameters, the phantom, and the pulse sequence that is Pulseq-compatible. The raw data is stored in the ISMRMRD format. For the reconstruction, MRIReco.jl is used. A graphical user interface utilizing web technologies was also designed. Two types of experiments were performed: one to compare the quality of the results and the execution speed, and the second to compare its usability. Finally, the use of Koma in quantitative imaging was demonstrated by simulating Magnetic Resonance Fingerprinting (MRF) acquisitions. RESULTS: Koma was compared to two well-known open-source MRI simulators, JEMRIS and MRiLab. Highly accurate results (with mean absolute differences below 0.1% compared to JEMRIS) and better GPU performance than MRiLab were demonstrated. In an experiment with students, Koma was proved to be easy to use, eight times faster on personal computers than JEMRIS, and 65% of test subjects recommended it. The potential for designing acquisition and reconstruction techniques was also shown through the simulation of MRF acquisitions, with conclusions that agree with the literature. CONCLUSIONS: Koma's speed and flexibility have the potential to make simulations more accessible for education and research. Koma is expected to be used for designing and testing novel pulse sequences before implementing them in the scanner with Pulseq files, and for creating synthetic data to train machine learning models.


Asunto(s)
Lenguaje , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Simulación por Computador , Fantasmas de Imagen , Aceleración
10.
Magn Reson Med ; 90(1): 64-78, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36861454

RESUMEN

PURPOSE: Develop a novel approach for accelerated 2D free-breathing myocardial perfusion via low-rank motion-corrected (LRMC) reconstructions. METHODS: Myocardial perfusion imaging requires high spatial and temporal resolution, despite scan time constraints. Here, we incorporate LRMC models into the reconstruction-encoding operator, together with high-dimensionality patch-based regularization, to produce high quality, motion-corrected myocardial perfusion series from free-breathing acquisitions. The proposed framework estimates beat-to-beat nonrigid respiratory (and any other incidental) motion and the dynamic contrast subspace from the actual acquired data, which are then incorporated into the proposed LRMC reconstruction. LRMC was compared with iterative SENSitivity Encoding (SENSE) (itSENSE) and low-rank plus sparse (LpS) reconstruction in 10 patients based on image-quality scoring and ranking by two clinical expert readers. RESULTS: LRMC achieved significantly improved results relative to itSENSE and LpS in terms of image sharpness, temporal coefficient of variation, and expert reader evaluation. Left ventricle image sharpness was approximately 75%, 79%, and 86% for itSENSE, LpS and LRMC, respectively, indicating improved image sharpness for the proposed approach. Corresponding temporal coefficient of variation results were 23%, 11% and 7%, demonstrating improved temporal fidelity of the perfusion signal with the proposed LRMC. Corresponding clinical expert reader scores (1-5, from poor to excellent image quality) were 3.3, 3.9 and 4.9, demonstrating improved image quality with the proposed LRMC, in agreement with the automated metrics. CONCLUSION: LRMC produces motion-corrected myocardial perfusion in free-breathing acquisitions with substantially improved image quality when compared with iterative SENSE and LpS reconstructions.


Asunto(s)
Imagen de Perfusión Miocárdica , Humanos , Imagen de Perfusión Miocárdica/métodos , Lipopolisacáridos , Respiración , Movimiento (Física) , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos
11.
NMR Biomed ; : e4942, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36999225

RESUMEN

The aim of the current study was to develop a novel approach for 2D breath-hold cardiac cine imaging from a single heartbeat, by combining cardiac motion-corrected reconstructions and nonrigidly aligned patch-based regularization. Conventional cardiac cine imaging is obtained via motion-resolved reconstructions of data acquired over multiple heartbeats. Here, we achieve single-heartbeat cine imaging by incorporating nonrigid cardiac motion correction into the reconstruction of each cardiac phase, in conjunction with a motion-aligned patch-based regularization. The proposed Motion-Corrected CINE (MC-CINE) incorporates all acquired data into the reconstruction of each (motion-corrected) cardiac phase, resulting in a better posed problem than motion-resolved approaches. MC-CINE was compared with iterative sensitivity encoding (itSENSE) and Extra-Dimensional Golden Angle Radial Sparse Parallel (XD-GRASP) in 14 healthy subjects in terms of image sharpness, reader scoring (range: 1-5) and reader ranking (range: 1-9) of image quality, and single-slice left ventricular assessment. MC-CINE was significantly superior to both itSENSE and XD-GRASP using 20 heartbeats, two heartbeats, and one heartbeat. Iterative SENSE, XD-GRASP, and MC-CINE achieved a sharpness of 74%, 74%, and 82% using 20 heartbeats, and 53%, 66%, and 82% with one heartbeat, respectively. The corresponding results for reader scoring were 4.0, 4.7, and 4.9 with 20 heartbeats, and 1.1, 3.0, and 3.9 with one heartbeat. The corresponding results for reader ranking were 5.3, 7.3, and 8.6 with 20 heartbeats, and 1.0, 3.2, and 5.4 with one heartbeat. MC-CINE using a single heartbeat presented nonsignificant differences in image quality to itSENSE with 20 heartbeats. MC-CINE and XD-GRASP at one heartbeat both presented a nonsignificant negative bias of less than 2% in ejection fraction relative to the reference itSENSE. It was concluded that the proposed MC-CINE significantly improves image quality relative to itSENSE and XD-GRASP, enabling 2D cine from a single heartbeat.

12.
NMR Biomed ; 36(8): e4932, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36940044

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. Liver biopsy remains the gold standard for diagnosis and staging of disease. There is a clinical need for noninvasive diagnostic tools for risk stratification, follow-up, and monitoring treatment response that are currently lacking, as well as preclinical models that recapitulate the etiology of the human condition. We have characterized the progression of NAFLD in eNOS-/- mice fed a high fat diet (HFD) using noninvasive Dixon-based magnetic resonance imaging and single voxel STEAM spectroscopy-based protocols to measure liver fat fraction at 3 T. After 8 weeks of diet intervention, eNOS-/- mice exhibited significant accumulation of intra-abdominal and liver fat compared with control mice. Liver fat fraction measured by 1 H-MRS in vivo showed a good correlation with the NAFLD activity score measured by histology. Treatment of HFD-fed NOS3-/- mice with metformin showed significantly reduced liver fat fraction and altered hepatic lipidomic profile compared with untreated mice. Our results show the potential of in vivo liver MRI and 1 H-MRS to noninvasively diagnose and stage the progression of NAFLD and to monitor treatment response in an eNOS-/- murine model that represents the classic NAFLD phenotype associated with metabolic syndrome.


Asunto(s)
Metformina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácidos Grasos/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Modelos Animales de Enfermedad , Hígado/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Ratones Endogámicos C57BL
13.
J Magn Reson Imaging ; 57(2): 387-402, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36205716

RESUMEN

Magnetic resonance imaging (MRI) is a versatile modality that can generate high-resolution images with a variety of tissue contrasts. However, MRI is a slow technique and requires long acquisition times, which increase with higher temporal and spatial resolution and/or when multiple contrasts and large volumetric coverage is required. In order to speedup MR data acquisition, several approaches have been introduced in the literature. Most of these techniques acquire less data than required and exploit intrinsic redundancies in the MR images to recover the information that was not sampled. This article presents a review of MR acquisition and reconstruction methods that have exploited redundancies in the temporal, spatial, and contrast/parametric dimensions to accelerate image data acquisition, focusing on cardiac and abdominal MR imaging applications. The review describes how each of these dimensions has been separately exploited for speeding up MR acquisition to then discuss more advanced techniques where multiple dimensions are exploited together for further reducing scan times. Finally, future directions for multidimensional image acceleration and remaining technical challenges are discussed. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: 1.


Asunto(s)
Corazón , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Corazón/diagnóstico por imagen , Aceleración , Procesamiento de Imagen Asistido por Computador/métodos
14.
J Magn Reson Imaging ; 57(2): 521-531, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35642573

RESUMEN

BACKGROUND: Cardiac MRI plays an important role in the diagnosis and follow-up of patients with congenital heart disease (CHD). Gadolinium-based contrast agents are often needed to overcome flow-related and off-resonance artifacts that can impair the quality of conventional noncontrast 3D imaging. As serial imaging is often required in CHD, the development of robust noncontrast 3D MRI techniques is desirable. PURPOSE: To assess the clinical utility of noncontrast enhanced magnetization transfer and inversion recovery prepared 3D free-breathing sequence (MTC-BOOST) compared to conventional 3D whole heart imaging in patients with CHD. STUDY TYPE: Prospective, image quality. POPULATION: A total of 27 adult patients (44% female, mean age 30.9 ± 14.8 years) with CHD. FIELD STRENGTH/SEQUENCE: A 1.5 T; free-breathing 3D MTC-BOOST sequence. ASSESSMENT: MTC-BOOST was compared to diaphragmatic navigator-gated, noncontrast T2 prepared 3D whole-heart imaging sequence (T2prep-3DWH) for comparison of vessel dimensions, lumen-to-myocardium contrast ratio (CR), and image quality (vessel wall sharpness and presence and type of artifacts) assessed by two experienced cardiologists on a 5-point scale. STATISTICAL TESTS: Mann-Whitney test, paired Wilcoxon signed-rank test, Bland-Altman plots. P < 0.05 was considered statistically significant. RESULTS: MTC-BOOST significantly improved image quality and CR of the right-sided pulmonary veins (PV): (CR: right upper PV 1.06 ± 0.50 vs. 0.58 ± 0.74; right lower PV 1.32 ± 0.38 vs. 0.81 ± 0.73) compared to conventional T2prep-3DWH imaging where the PVs were not visualized in some cases due to off-resonance effects. MTC-BOOST demonstrated resistance to degradation of luminal signal (assessed by CR) secondary to accelerated or turbulent flow conditions. T2prep-3DWH had higher image quality scores than MTC-BOOST for the aorta and coronary arteries; however, great vessel dimensions derived from MTC-BOOST showed excellent agreement with standard T2prep-3DWH imaging. DATA CONCLUSION: MTC-BOOST allows for improved contrast-free imaging of pulmonary veins and regions characterized by accelerated or turbulent blood flow compared to standard T2prep-3DWH imaging, with excellent agreement of great vessel dimensions. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Cardiopatías Congénitas , Venas Pulmonares , Humanos , Adulto , Femenino , Adolescente , Adulto Joven , Persona de Mediana Edad , Masculino , Venas Pulmonares/diagnóstico por imagen , Estudios Prospectivos , Angiografía por Resonancia Magnética/métodos , Cardiopatías Congénitas/diagnóstico por imagen , Imagen por Resonancia Magnética , Medios de Contraste , Imagenología Tridimensional/métodos , Reproducibilidad de los Resultados
15.
J Magn Reson Imaging ; 58(4): 1110-1122, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36757267

RESUMEN

BACKGROUND: Bright-blood lumen and black-blood vessel wall imaging are required for the comprehensive assessment of aortic disease. These images are usually acquired separately, resulting in long examinations and potential misregistration between images. PURPOSE: To characterize the performance of an accelerated and respiratory motion-compensated three-dimensional (3D) cardiac MRI technique for simultaneous contrast-free aortic lumen and vessel wall imaging with an interleaved T2 and inversion recovery prepared sequence (iT2Prep-BOOST). STUDY TYPE: Prospective. POPULATION: A total of 30 consecutive patients with aortopathy referred for a clinically indicated cardiac MRI examination (9 females, mean age ± standard deviation: 32 ± 12 years). FIELD STRENGTH/SEQUENCE: 1.5-T; bright-blood MR angiography (diaphragmatic navigator-gated T2-prepared 3D balanced steady-state free precession [bSSFP], T2Prep-bSSFP), breath-held black-blood two-dimensional (2D) half acquisition single-shot turbo spin echo (HASTE), and 3D bSSFP iT2Prep-BOOST. ASSESSMENT: iT2Prep-BOOST bright-blood images were compared to T2prep-bSSFP images in terms of aortic vessel dimensions, lumen-to-myocardium contrast ratio (CR), and image quality (diagnostic confidence, vessel sharpness and presence of artifacts, assessed by three cardiologists on a 4-point scale, 1: nondiagnostic to 4: excellent). The iT2Prep-BOOST black-blood images were compared to 2D HASTE images for quantification of wall thickness. A visual comparison between computed tomography (CT) and iT2Prep-BOOST was performed in a patient with chronic aortic dissection. STATISTICAL TESTS: Paired t-tests, Wilcoxon signed-rank tests, intraclass correlation coefficient (ICC), Bland-Altman analysis. A P value < 0.05 was considered statistically significant. RESULTS: Bright-blood iT2Prep-BOOST resulted in significantly improved image quality (mean ± standard deviation 3.8 ± 0.5 vs. 3.3 ± 0.8) and CR (2.9 ± 0.8 vs. 1.8 ± 0.5) compared with T2Prep-bSSFP, with a shorter scan time (7.8 ± 1.7 minutes vs. 12.9 ± 3.4 minutes) while providing a complementary 3D black-blood image. Aortic lumen diameter and vessel wall thickness measurements in bright-blood and black-blood images were in good agreement with T2Prep-bSSFP and HASTE images (<0.02 cm and <0.005 cm bias, respectively) and good intrareader (ICC > 0.96) and interreader (ICC > 0.94) agreement was observed for all measurements. DATA CONCLUSION: iT2Prep-BOOST might enable time-efficient simultaneous bright- and black-blood aortic imaging, with improved image quality compared to T2Prep-bSSFP and HASTE imaging, and comparable measurements for aortic wall and lumen dimensions. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Enfermedades de la Aorta , Angiografía por Resonancia Magnética , Femenino , Humanos , Angiografía por Resonancia Magnética/métodos , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Enfermedades de la Aorta/diagnóstico por imagen , Miocardio , Imagenología Tridimensional/métodos , Reproducibilidad de los Resultados
16.
J Cardiovasc Magn Reson ; 25(1): 80, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38124106

RESUMEN

BACKGROUND: Quantification of three-dimensional (3D) cardiac anatomy is important for the evaluation of cardiovascular diseases. Changes in anatomy are indicative of remodeling processes as the heart tissue adapts to disease. Although robust segmentation methods exist for computed tomography angiography (CTA), few methods exist for whole-heart cardiovascular magnetic resonance angiograms (CMRA) which are more challenging due to variable contrast, lower signal to noise ratio and a limited amount of labeled data. METHODS: Two state-of-the-art unsupervised generative deep learning domain adaptation architectures, generative adversarial networks and variational auto-encoders, were applied to 3D whole heart segmentation of both conventional (n = 20) and high-resolution (n = 45) CMRA (target) images, given segmented CTA (source) images for training. An additional supervised loss function was implemented to improve performance given 10%, 20% and 30% segmented CMRA cases. A fully supervised nn-UNet trained on the given CMRA segmentations was used as the benchmark. RESULTS: The addition of a small number of segmented CMRA training cases substantially improved performance in both generative architectures in both standard and high-resolution datasets. Compared with the nn-UNet benchmark, the generative methods showed substantially better performance in the case of limited labelled cases. On the standard CMRA dataset, an average 12% (adversarial method) and 10% (variational method) improvement in Dice score was obtained. CONCLUSIONS: Unsupervised domain-adaptation methods for CMRA segmentation can be boosted by the addition of a small number of supervised target training cases. When only few labelled cases are available, semi-supervised generative modelling is superior to supervised methods.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Humanos , Angiografía por Resonancia Magnética , Valor Predictivo de las Pruebas , Corazón , Procesamiento de Imagen Asistido por Computador
17.
J Cardiovasc Magn Reson ; 25(1): 52, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37779192

RESUMEN

BACKGROUND: Coronary magnetic resonance angiography (coronary MRA) is increasingly being considered as a clinically viable method to investigate coronary artery disease (CAD). Accurate determination of the trigger delay to place the acquisition window within the quiescent part of the cardiac cycle is critical for coronary MRA in order to reduce cardiac motion. This is currently reliant on operator-led decision making, which can negatively affect consistency of scan acquisition. Recently developed deep learning (DL) derived software may overcome these issues by automation of cardiac rest period detection. METHODS: Thirty individuals (female, n = 10) were investigated using a 0.9 mm isotropic image-navigator (iNAV)-based motion-corrected coronary MRA sequence. Each individual was scanned three times utilising different strategies for determination of the optimal trigger delay: (1) the DL software, (2) an experienced operator decision, and (3) a previously utilised formula for determining the trigger delay. Methodologies were compared using custom-made analysis software to assess visible coronary vessel length and coronary vessel sharpness for the entire vessel length and the first 4 cm of each vessel. RESULTS: There was no difference in image quality between any of the methodologies for determination of the optimal trigger delay, as assessed by visible coronary vessel length, coronary vessel sharpness for each entire vessel and vessel sharpness for the first 4 cm of the left mainstem, left anterior descending or right coronary arteries. However, vessel length of the left circumflex was slightly greater using the formula method. The time taken to calculate the trigger delay was significantly lower for the DL-method as compared to the operator-led approach (106 ± 38.0 s vs 168 ± 39.2 s, p < 0.01, 95% CI of difference 25.5-98.1 s). CONCLUSIONS: Deep learning-derived automated software can effectively and efficiently determine the optimal trigger delay for acquisition of coronary MRA and thus may simplify workflow and improve reproducibility.


Asunto(s)
Corazón , Angiografía por Resonancia Magnética , Humanos , Femenino , Angiografía por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Valor Predictivo de las Pruebas , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/patología , Angiografía Coronaria/métodos , Imagenología Tridimensional
18.
Magn Reson Med ; 87(4): 1980-1991, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34792212

RESUMEN

PURPOSE: To develop a novel simultaneous co-registered T1 , T2 , T2∗ , T1ρ , and fat fraction abdominal MR fingerprinting (MRF) approach for fully comprehensive liver-tissue characterization in a single breath-hold scan. METHODS: A gradient-echo liver MRF sequence with low fixed flip angle, multi-echo radial readout, and varying magnetization preparation pulses for multiparametric encoding is performed at 1.5 T. The T2∗ and fat fraction are estimated from a graph/cut water/fat separation method using a six-peak fat model. Water/fat singular images obtained are then matched to an MRF dictionary, estimating water-specific T1 , T2 , and T1ρ . The proposed approach was tested in phantoms and 10 healthy subjects and compared against conventional sequences. RESULTS: For the phantom studies, linear fits show excellent coefficients of determination (r2 > 0.9) for every parametric map. For in vivo studies, the average values measured within regions of interest drawn on liver, spleen, muscle, and fat are statistically different from the reference scans (p < 0.05) for T1 , T2 , and T1⍴ but not for T2∗ and fat fraction, whereas correlation between MRF and reference scans is excellent for each parameter (r2 > 0.92 for every parameter). CONCLUSION: The proposed multi-echo inversion-recovery, T2 , and T1⍴ prepared liver MRF sequence presented in this work allows for quantitative T1 , T2 , T2∗ , T1⍴ , and fat fraction liver-tissue characterization in a single breath-hold scan of 18 seconds. The approach showed good agreement and correlation with respect to reference clinical maps.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Contencion de la Respiración , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen
19.
Magn Reson Med ; 87(2): 746-763, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34601737

RESUMEN

PURPOSE: Develop a novel low-rank motion-corrected (LRMC) reconstruction for nonrigid motion-corrected MR fingerprinting (MRF). METHODS: Generalized motion-corrected (MC) reconstructions have been developed for steady-state imaging. Here we extend this framework to enable nonrigid MC for transient imaging applications with varying contrast, such as MRF. This is achieved by integrating low-rank dictionary-based compression into the generalized MC model to reconstruct MC singular images, reducing motion artifacts in the resulting parametric maps. The proposed LRMC reconstruction was applied for cardiac motion correction in 2D myocardial MRF (T1 and T2 ) with extended cardiac acquisition window (~450 ms) and for respiratory MC in free-breathing 3D myocardial and 3D liver MRF. Experiments were performed in phantom and 22 healthy subjects. The proposed approach was compared with reference spin echo (phantom) and with 2D electrocardiogram-triggered/breath-hold MOLLI and T2 gradient-and-spin echo conventional maps (in vivo 2D and 3D myocardial MRF). RESULTS: Phantom results were in general agreement with reference spin-echo measurements, presenting relative errors of approximately 5.4% and 5.5% for T1 and short T2 (<100 ms), respectively. The proposed LRMC MRF reduced residual blurring artifacts with respect to no MC for cardiac or respiratory motion in all cases (2D and 3D myocardial, 3D abdominal). In 2D myocardial MRF, left-ventricle T1 values were 1150 ± 41 ms for LRMC MRF and 1010 ± 56 ms for MOLLI; T2 values were 43.8 ± 2.3 ms for LRMC MRF and 49.5 ± 4.5 ms for T2 gradient and spin echo. Corresponding measurements for 3D myocardial MRF were 1085 ± 30 ms and 1062 ± 29 ms for T1 , and 43.5 ± 1.9 ms and 51.7 ± 1.7 ms for T2 . For 3D liver, LRMC MRF measured liver T1 at 565 ± 44 ms and liver T2 at 35.4 ± 2.4 ms. CONCLUSION: The proposed LRMC reconstruction enabled generalized (nonrigid) MC for 2D and 3D MRF, both for cardiac and respiratory motion. The proposed approach reduced motion artifacts in the MRF maps with respect to no motion compensation and achieved good agreement with reference measurements.


Asunto(s)
Contencion de la Respiración , Imagen por Resonancia Magnética , Corazón/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Movimiento (Física) , Fantasmas de Imagen
20.
Magn Reson Med ; 87(4): 1992-2002, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34799854

RESUMEN

PURPOSE: To develop a simultaneous T1 , T2 , and T1ρ cardiac magnetic resonance fingerprinting (MRF) approach to enable comprehensive contrast agent-free myocardial tissue characterization in a single breath-hold scan. METHODS: A 2D gradient-echo electrocardiogram-triggered cardiac MRF sequence with low flip angles, varying magnetization preparation, and spiral trajectory was acquired at 1.5 T to encode T1 , T2 , and T1⍴ simultaneously. The MRF images were reconstructed using low-rank inversion, regularized with a multicontrast patch-based higher-order reconstruction. Parametric maps were generated and matched in the singular value domain to extended phase graph-based dictionaries. The proposed approach was tested in phantoms and 10 healthy subjects and compared against conventional methods in terms of coefficients of determination and best fits for the phantom study, and in terms of Bland-Altman agreement, average values and coefficient of variation of T1 , T2 , and T1⍴ for the healthy subjects study. RESULTS: The T1 , T2 , and T1⍴ MRF values showed excellent correlation with conventional spin-echo and clinical mapping methods in phantom studies (r2 > 0.97). Measured MRF values in myocardial tissue (mean ± SD) were 1133 ± 33 ms, 38.8 ± 3.5 ms, and 52.0 ± 4.0 ms for T1 , T2 and T1⍴ , respectively, against 1053 ± 47 ms, 50.4 ± 3.9 ms, and 55.9 ± 3.3 ms for T1 modified Look-Locker inversion imaging, T2 gradient and spin echo, and T1⍴ turbo field echo, respectively. CONCLUSION: A cardiac MRF approach for simultaneous quantification of myocardial T1 , T2 , and T1ρ in a single breath-hold MR scan of about 16 seconds has been proposed. The approach has been investigated in phantoms and healthy subjects showing good agreement with reference spin echo measurements and conventional clinical maps.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Corazón/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA