Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cells ; 13(2)2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38247865

RESUMEN

Obesity is a growing pandemic with an increasing risk of inducing different cancer types, including breast cancer. Adipose tissue is proposed to be a major player in the initiation and progression of breast cancer in obese people. However, the mechanistic link between adipogenicity and tumorigenicity in breast tissues is poorly understood. We used in vitro and in vivo approaches to investigate the mechanistic relationship between obesity and the onset and progression of breast cancer. In obesity, adipose tissue expansion and remodeling are associated with increased inflammatory mediator's release and anti-inflammatory mediators' reduction.. In order to mimic the obesity micro-environment, we cultured cells in an enriched pro-inflammatory cytokine medium to which we added a low concentration of beneficial adipokines. Epithelial cells exposed to the obesity micro-environment were phenotypically transformed into mesenchymal-like cells, characterized by an increase in different mesenchymal markers and the acquisition of the major hallmarks of cancerous cells; these include sustained DNA damage, the activation of the ATR-Chk2 pathway, an increase in proliferation rate, cell invasion, and resistance to conventional chemotherapy. Transcriptomic analysis revealed that several genes, including RhoJ, CCL7, and MMP9, acted as potential major players in the observed phenomenon. The transcriptomics findings were confirmed in vitro using qRT-PCR and in vivo using high-fat-diet-fed mice. Our data suggests RhoJ as a potential novel molecular driver of tumor development in breast tissues and a mediator of cell resistance to conventional chemotherapy through PAK1 activation. These data propose that RhoJ is a potential target for therapeutic interventions in obese breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Obesidad , Proteínas de Unión al GTP rho , Animales , Femenino , Humanos , Ratones , Adipoquinas , Adiposidad , Neoplasias de la Mama/etiología , Neoplasias de la Mama/genética , Obesidad/complicaciones , Microambiente Tumoral , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
2.
Biomol Ther (Seoul) ; 32(1): 38-55, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38148552

RESUMEN

Cancer is a global health challenge with high morbidity and mortality rates. However, conventional cancer treatment methods often have severe side effects and limited success rates. In the last decade, extensive research has been conducted to develop safe, and efficient alternative treatments that do not have the limitations of existing anticancer medicines. Plant-derived compounds have shown promise in cancer treatment for their anti-carcinogenic and anti-proliferative properties. Rosmarinic acid (RA) and carnosic acid (CA) are potent polyphenolic compounds found in rosemary (Rosmarinus officinalis) extract. They have been extensively studied for their biological properties, which include anti-diabetic, anti-inflammatory, antioxidant, and anticancer activities. In addition, RA and CA have demonstrated effective anti-proliferative properties against various cancers, making them promising targets for extensive research to develop candidate or leading compounds for cancer treatment. This review discusses and summarizes the anti-tumor effect of RA and CA against various cancers and highlights the involved biochemical and mechanistic pathways.

3.
Front Pharmacol ; 14: 1086946, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909156

RESUMEN

Proteolysis targeting chimeras (PROTACs) are heterobifunctional small molecules that uses the proteasome ubiquitin system to target proteins of interest and promote their degradation with remarkable selectivity. Importantly, unlike conventional small molecule inhibitors, PROTACs have proven highly effective in targeting undruggable proteins and those bearing mutations. Because of these considerations, PROTACs have increasingly become an emerging technology for the development of novel targeted anticancer therapeutics. Interestingly, many PROTACs have demonstrated a great potency and specificity in degrading several oncogenic drivers. Many of these, following extensive preclinical evaluation, have reached advanced stages of clinical testing in various cancers including hematologic malignancies. In this review, we provide a comprehensive summary of the recent advances in the development of PROTACs as therapeutic strategies in diverse hematological malignancies. A particular attention has been given to clinically relevant PROTACs and those targeting oncogenic mutants that drive resistance to therapies. We also discus limitations, and various considerations to optimize the design for effective PROTACs.

4.
Heliyon ; 9(6): e16706, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37332907

RESUMEN

Calotropis procera is a perennial flowering plant of the Apocynaceae family, traditionally used in medicine to treat various ailments. Recent investigations have revealed its potential therapeutic activities such as anti-inflammatory, gastroprotective, analgesic, anti-obesity, and anti-diabetic properties. RP-HPLC qualitatively and quantitatively evaluated the phenolic acids and flavonoids in the ethanolic extract at two different wavelengths, 280 and 330 nm. In addition, total phenolic and flavonoid contents were measured via spectrophotometric determination in addition to the antioxidant activity. The antiproliferative effects of C. procera were investigated on two cancer cell lines: human colon (HCT-116) and breast (MCF-7) cancer. Several methods were utilised to analyse the effectiveness of the plant extract on the cytotoxicity, apoptosis, cell cycle progression, genes involved in the cell cycle, and protein expression profiles of HCT-116 and MCF-7 cells. These included the MTT assay, Annexin V-FITC/PI, analysis of the cell cycle, and Western blot. Results indicated that ferulic and caffeic acids were the major compounds at λmax 280 nm (1.374% and 0.561%, respectively), while the major compounds at λmax 325 nm were kaempferol and luteolin (1.036% and 0.512%, respectively). The ethanolic extract had significantly higher antioxidant activity (80 ± 2.3%) compared to ascorbic acid (90 ± 3.1%). C. procera extract exhibited dose-dependent cell growth inhibition, with an estimated IC50 of 50 µg/mL for MCF-7 and 55 µg/mL for HCT-116 cells at 24 h. Annexin V-FITC/PI confirmed the induction of apoptosis. Remarkably, cell cycle arrest occurred at the sub-G1 phase in MCF-7 cells, while in HCT-116 cells, it was observed at the G2-M phase. The sub-G1 arrest was associated with dysregulation of Akt, p-AKT, mTOR, and p-mTOR proteins, as confirmed by the Western blot analysis, while downregulation of CDK1, cyclin B1, and survivin caused G2-M arrest.

5.
Curr Mol Pharmacol ; 15(4): 620-646, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34488607

RESUMEN

The prevalence of obesity continues to increase to the extent that it became a worldwide pandemic. An accumulating body of evidence has associated obesity with the development of different types of cancer, including colorectal cancer, which is a notorious disease with a high mortality rate. At the molecular level, colorectal cancer is a heterogenous disease characterized by a myriad of genetic and epigenetic alterations associated with various forms of genomic instability (detailed in Supplementary Materials). Recently, the microenvironment has emerged as a major factor in carcinogenesis. Our aim is to define the different molecular alterations leading to the development of colorectal cancer in obese patients with a focus on the role of the microenvironment in carcinogenesis. We also highlight all existent molecules in clinical trials that target the activated pathways in obesity-associated colorectal cancer, whether used as single treatments or in combination. Obesity predisposes to colorectal cancer via creating a state of chronic inflammation with dysregulated adipokines, inflammatory mediators, and other factors such as immune cell infiltration. A unifying theme in obesity-mediated colorectal cancer is the activation of the PI3K/AKT, mTOR/MAPK, and STAT3 signaling pathways. Different inhibitory molecules towards these pathways exist, increasing the therapeutic choice of obesity-associated colon cancer. However, obese patients are more likely to suffer from chemotherapy overdosing. Preventing obesity through maintaining a healthy and active lifestyle remains to be the best remedy.


Asunto(s)
Neoplasias del Colon , Fosfatidilinositol 3-Quinasas , Carcinogénesis , Humanos , Inflamación/complicaciones , Inflamación/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Microambiente Tumoral
6.
Pharmaceuticals (Basel) ; 13(6)2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503209

RESUMEN

Micromeria fruticosa (L.) Druce subsp. Serpyllifolia (Lamiaceae) has been used widely in folk medicine to alleviate various ailments such as abdominal pains, diarrhea, colds, eye infections, heart disorders and wounds. A few reports have confirmed different therapeutic potentialities of its extracts, including the anti-inflammatory, gastroprotective, analgesic, antiobesity and antidiabetic activities. This study aimed to investigate the mechanistic pathway of the antiproliferative activity of the ethanolic extract of M. fruticose on two different cancer cell lines, namely human breast (mammary carcinoma F7 (MCF-7)) and human colorectal (human colon tumor cells (HCT-116)) cell lines. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium (MTT) assay, Annexin V-FITC/PI, caspases 8/9 and cell cycle analyses, qRT-PCR and Western blot were used to assess the effect of M. fruticosa on cytotoxicity, apoptosis, cell cycle, cell cycle-related genes and protein expression profiles in MCF-7 and HCT-116. The extract inhibits cell proliferation in a time- and dose-dependent manner. The half-maximal inhibitory concentration (IC50) for both cell lines was found to be 100 µg/mL. Apoptosis induction was confirmed by Annexin V-FITC/PI, that was related to caspases 8 and 9 activities induction. Furthermore, the cell cycle analysis revealed arrest at G2/M phase. The underlying mechanism involved in the G2/M arrest was found to be associated with the downregulation of CDK1, cyclin B1 and survivin that was confirmed by qRT-PCR and Western blotting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA