Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Br J Cancer ; 129(12): 2014-2024, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37914802

RESUMEN

BACKGROUND: Lung cancer is the biggest cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for 85-90% of all lung cancers. Identification of novel therapeutic targets are required as drug resistance impairs chemotherapy effectiveness. COMMD4 is a potential NSCLC therapeutic target. The aims of this study were to investigate the COMMD4-H2B binding pose and develop a short H2B peptide that disrupts the COMMD4-H2B interaction and mimics COMMD4 siRNA depletion. METHODS: Molecular modelling, in vitro binding and site-directed mutagenesis were used to identify the COMMD4-H2B binding pose and develop a H2B peptide to inhibit the COMMD4-H2B interaction. Cell viability, DNA repair and mitotic catastrophe assays were performed to determine whether this peptide can specially kill NSCLC cells. RESULTS: Based on the COMMD4-H2B binding pose, we have identified a H2B peptide that inhibits COMMD4-H2B by directly binding to COMMD4 on its H2B binding binding site, both in vitro and in vivo. Treatment of NSCLC cell lines with this peptide resulted in increased sensitivity to ionising radiation, increased DNA double-strand breaks and induction of mitotic catastrophe in NSCLC cell lines. CONCLUSIONS: Our data shows that COMMD4-H2B represents a novel potential NSCLC therapeutic target.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Reparación del ADN , Péptidos/genética
2.
Nucleic Acids Res ; 49(6): 3294-3307, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33660778

RESUMEN

DNA repair pathways are essential to maintain the integrity of the genome and prevent cell death and tumourigenesis. Here, we show that the Barrier-to-Autointegration Factor (Banf1) protein has a role in the repair of DNA double-strand breaks. Banf1 is characterized as a nuclear envelope protein and mutations in Banf1 are associated with the severe premature aging syndrome, Néstor-Guillermo Progeria Syndrome. We have previously shown that Banf1 directly regulates the activity of PARP1 in the repair of oxidative DNA lesions. Here, we show that Banf1 also has a role in modulating DNA double-strand break repair through regulation of the DNA-dependent Protein Kinase catalytic subunit, DNA-PKcs. Specifically, we demonstrate that Banf1 relocalizes from the nuclear envelope to sites of DNA double-strand breaks. We also show that Banf1 can bind to and directly inhibit the activity of DNA-PKcs. Supporting this, cellular depletion of Banf1 leads to an increase in non-homologous end-joining and a decrease in homologous recombination, which our data suggest is likely due to unrestrained DNA-PKcs activity. Overall, this study identifies how Banf1 regulates double-strand break repair pathway choice by modulating DNA-PKcs activity to control genome stability within the cell.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Línea Celular , Células HEK293 , Recombinación Homóloga , Humanos
3.
Proteins ; 88(2): 319-326, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31443132

RESUMEN

Single-stranded DNA-binding proteins (SSBs) are required for all known DNA metabolic events such as DNA replication, recombination and repair. While a wealth of structural and functional data is available on the essential human SSB, hSSB1 (NABP2/OBFC2B), the close homolog hSSB2 (NABP1/OBFC2A) remains relatively uncharacterized. Both SSBs possess a well-structured OB (oligonucleotide/oligosaccharide-binding) domain that is able to recognize single-stranded DNA (ssDNA) followed by a flexible carboxyl-tail implicated in the interaction with other proteins. Despite the high sequence similarity of the OB domain, several recent studies have revealed distinct functional differences between hSSB1 and hSSB2. In this study, we show that hSSB2 is able to recognize cyclobutane pyrimidine dimers (CPD) that form in cellular DNA as a consequence of UV damage. Using a combination of biolayer interferometry and NMR, we determine the molecular details of the binding of the OB domain of hSSB2 to CPD-containing ssDNA, confirming the role of four key aromatic residues in hSSB2 (W59, Y78, W82, and Y89) that are also conserved in hSSB1. Our structural data thus demonstrate that ssDNA recognition by the OB fold of hSSB2 is highly similar to hSSB1, indicating that one SSB may be able to replace the other in any initial ssDNA binding event. However, any subsequent recruitment of other repair proteins most likely depends on the divergent carboxyl-tail and as such is likely to be different between hSSB1 and hSSB2.


Asunto(s)
Daño del ADN , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Rayos Ultravioleta , Sitios de Unión/genética , Reparación del ADN , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Interferometría/métodos , Espectroscopía de Resonancia Magnética/métodos , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Unión Proteica , Dominios Proteicos
4.
Blood ; 129(18): 2479-2492, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28270450

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) are vulnerable to endogenous damage and defects in DNA repair can limit their function. The 2 single-stranded DNA (ssDNA) binding proteins SSB1 and SSB2 are crucial regulators of the DNA damage response; however, their overlapping roles during normal physiology are incompletely understood. We generated mice in which both Ssb1 and Ssb2 were constitutively or conditionally deleted. Constitutive Ssb1/Ssb2 double knockout (DKO) caused early embryonic lethality, whereas conditional Ssb1/Ssb2 double knockout (cDKO) in adult mice resulted in acute lethality due to bone marrow failure and intestinal atrophy featuring stem and progenitor cell depletion, a phenotype unexpected from the previously reported single knockout models of Ssb1 or Ssb2 Mechanistically, cDKO HSPCs showed altered replication fork dynamics, massive accumulation of DNA damage, genome-wide double-strand breaks enriched at Ssb-binding regions and CpG islands, together with the accumulation of R-loops and cytosolic ssDNA. Transcriptional profiling of cDKO HSPCs revealed the activation of p53 and interferon (IFN) pathways, which enforced cell cycling in quiescent HSPCs, resulting in their apoptotic death. The rapid cell death phenotype was reproducible in in vitro cultured cDKO-hematopoietic stem cells, which were significantly rescued by nucleotide supplementation or after depletion of p53. Collectively, Ssb1 and Ssb2 control crucial aspects of HSPC function, including proliferation and survival in vivo by resolving replicative stress to maintain genomic stability.


Asunto(s)
Proliferación Celular/fisiología , Roturas del ADN de Doble Cadena , Inestabilidad Genómica/fisiología , Células Madre Hematopoyéticas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Animales , Supervivencia Celular/fisiología , Islas de CpG/fisiología , Células Madre Hematopoyéticas/citología , Ratones , Ratones Noqueados , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
BMC Mol Biol ; 17(1): 19, 2016 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-27553022

RESUMEN

Nucleophosmin (NPM1) is a critical cellular protein that has been implicated in a number of pathways including mRNA transport, chromatin remodeling, apoptosis and genome stability. NPM1 function is a critical requirement for normal cellular biology as is underlined in cancer where NPM1 is commonly overexpressed, mutated, rearranged and sporadically deleted. Consistent with a multifunctional role within the cell, NPM1 can function not only as a proto-oncogene but also as a tumor suppressor. The aim of this review is to look at the less well-described role of NPM1 in the DNA repair pathways as well as the role of NPM1 in the regulation of apoptosis and its mutation in cancers.


Asunto(s)
Reparación del ADN , Mutación , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Animales , Apoptosis , Evolución Molecular , Inestabilidad Genómica , Humanos , Modelos Moleculares , Neoplasias/metabolismo , Proteínas Nucleares/química , Nucleofosmina , Conformación Proteica , Proto-Oncogenes Mas
6.
FASEB J ; 29(8): 3326-34, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25917330

RESUMEN

SSB1 and SSB2 are newly identified single-stranded (ss) DNA binding proteins that play a crucial role in genome maintenance in humans. We recently generated a knockout mouse model of Ssb1 and revealed its essential role for neonatal survival. Notably, we found compensatory up-regulation of Ssb2 protein levels in multiple tissues of conditional Ssb1(-/-) mice, suggesting functional compensation between these 2 proteins. We report here the first description of Ssb2(-/-) knockout mice. Surprisingly, unlike Ssb1 knockout mice, Ssb2(-/-) mice are viable and fertile and do not exhibit marked phenotypic changes when compared with their Ssb2(+/+) and Ssb2(+/-) littermates. Notably, we did not detect any pathologic changes in the thymus, spleen, or testes, tissues with the most abundant expression of Ssb2. Moreover, Ssb2(-/-) mouse embryonic fibroblasts (MEFs) did not show any sensitivity to DNA-damaging agents, or defects in DNA repair capacity. However, we observed modest up-regulation of Ssb1 levels in Ssb2(-/-) MEFs as well as in Ssb2(-/-) thymus and spleen, suggesting that Ssb1 is likely able to compensate for the loss of Ssb2 in mice. Altogether, our results show that Ssb2 is dispensable for embryogenesis and adult tissue homeostasis, including thymopoiesis, splenic development, male fertility, and DNA repair in mice.


Asunto(s)
Proteínas Portadoras/metabolismo , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Fertilidad/genética , Timo/metabolismo , Animales , Fibroblastos/metabolismo , Fibroblastos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica/genética , Bazo/metabolismo , Bazo/fisiología , Timo/fisiología , Regulación hacia Arriba/genética
7.
Nucleic Acids Res ; 38(6): 1821-31, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20019063

RESUMEN

DNA double-strand break (DSB) repair via the homologous recombination pathway is a multi-stage process, which results in repair of the DSB without loss of genetic information or fidelity. One essential step in this process is the generation of extended single-stranded DNA (ssDNA) regions at the break site. This ssDNA serves to induce cell cycle checkpoints and is required for Rad51 mediated strand invasion of the sister chromatid. Here, we show that human Exonuclease 1 (Exo1) is required for the normal repair of DSBs by HR. Cells depleted of Exo1 show chromosomal instability and hypersensitivity to ionising radiation (IR) exposure. We find that Exo1 accumulates rapidly at DSBs and is required for the recruitment of RPA and Rad51 to sites of DSBs, suggesting a role for Exo1 in ssDNA generation. Interestingly, the phosphorylation of Exo1 by ATM appears to regulate the activity of Exo1 following resection, allowing optimal Rad51 loading and the completion of HR repair. These data establish a role for Exo1 in resection of DSBs in human cells, highlighting the critical requirement of Exo1 for DSB repair via HR and thus the maintenance of genomic stability.


Asunto(s)
Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Exodesoxirribonucleasas/metabolismo , Recombinación Genética , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Aberraciones Cromosómicas , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/fisiología , Técnicas de Silenciamiento del Gen , Histonas/metabolismo , Humanos , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinasa Rad51/metabolismo , Radiación Ionizante , Proteínas Supresoras de Tumor/metabolismo
8.
Sci Rep ; 11(1): 20256, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34642383

RESUMEN

Maintenance of genomic stability is critical to prevent diseases such as cancer. As such, eukaryotic cells have multiple pathways to efficiently detect, signal and repair DNA damage. One common form of exogenous DNA damage comes from ultraviolet B (UVB) radiation. UVB generates cyclobutane pyrimidine dimers (CPD) that must be rapidly detected and repaired to maintain the genetic code. The nucleotide excision repair (NER) pathway is the main repair system for this type of DNA damage. Here, we determined the role of the human Single-Stranded DNA Binding protein 2, hSSB2, in the response to UVB exposure. We demonstrate that hSSB2 levels increase in vitro and in vivo after UVB irradiation and that hSSB2 rapidly binds to chromatin. Depletion of hSSB2 results in significantly decreased Replication Protein A (RPA32) phosphorylation and impaired RPA32 localisation to the site of UV-induced DNA damage. Delayed recruitment of NER protein Xeroderma Pigmentosum group C (XPC) was also observed, leading to increased cellular sensitivity to UVB. Finally, hSSB2 was shown to have affinity for single-strand DNA containing a single CPD and for duplex DNA with a two-base mismatch mimicking a CPD moiety. Altogether our data demonstrate that hSSB2 is involved in the cellular response to UV exposure.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteína de Replicación A/metabolismo , Rayos Ultravioleta/efectos adversos , Animales , Línea Celular , Cromatina/metabolismo , Daño del ADN , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/efectos de la radiación , Células HeLa , Humanos , Fosforilación/efectos de la radiación , Regulación hacia Arriba
9.
Nucleic Acids Res ; 36(22): 7192-206, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19004874

RESUMEN

Synthesis of selenoproteins depends on decoding of the UGA stop codon as the amino acid selenocysteine (Sec). This process requires the presence of a Sec insertion sequence element (SECIS) in the 3'-untranslated region of selenoprotein mRNAs and its interaction with the SECIS binding protein 2 (SBP2). In humans, mutations in the SBP2-encoding gene Sec insertion sequence binding protein 2 (SECISBP2) that alter the amino acid sequence or cause splicing defects lead to abnormal thyroid hormone metabolism. Herein, we present the first in silico and in vivo functional characterization of alternative splicing of SECISBP2. We report a complex splicing pattern in the 5'-region of human SECISBP2, wherein at least eight splice variants encode five isoforms with varying N-terminal sequence. One of the isoforms, mtSBP2, contains a mitochondrial targeting sequence and localizes to mitochondria. Using a minigene-based in vivo splicing assay we characterized the splicing efficiency of several alternative transcripts, and show that the splicing event that creates mtSBP2 can be modulated by antisense oligonucleotides. Moreover, we show that full-length SBP2 and some alternatively spliced variants are subject to a coordinated transcriptional and translational regulation in response to ultraviolet type A irradiation-induced stress. Overall, our data broadens the functional scope of a housekeeping protein essential to selenium metabolism.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al ARN/genética , Línea Celular , Evolución Molecular , Regulación de la Expresión Génica , Humanos , Proteínas Mitocondriales/análisis , Proteínas Mitocondriales/genética , Oligonucleótidos Antisentido/farmacología , Sistemas de Lectura Abierta , Biosíntesis de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Transcripción Genética , Rayos Ultravioleta
10.
Curr Med Chem ; 27(12): 1901-1921, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31258058

RESUMEN

BACKGROUND: Reactive Oxygen Species (ROS) are by-products of normal cellular metabolic processes, such as mitochondrial oxidative phosphorylation. While low levels of ROS are important signalling molecules, high levels of ROS can damage proteins, lipids and DNA. Indeed, oxidative DNA damage is the most frequent type of damage in the mammalian genome and is linked to human pathologies such as cancer and neurodegenerative disorders. Although oxidative DNA damage is cleared predominantly through the Base Excision Repair (BER) pathway, recent evidence suggests that additional pathways such as Nucleotide Excision Repair (NER) and Mismatch Repair (MMR) can also participate in clearance of these lesions. One of the most common forms of oxidative DNA damage is the base damage 8-oxoguanine (8-oxoG), which if left unrepaired may result in G:C to A:T transversions during replication, a common mutagenic feature that can lead to cellular transformation. OBJECTIVE: Repair of oxidative DNA damage, including 8-oxoG base damage, involves the functional interplay between a number of proteins in a series of enzymatic reactions. This review describes the role and the redox regulation of key proteins involved in the initial stages of BER of 8-oxoG damage, namely Apurinic/Apyrimidinic Endonuclease 1 (APE1), human 8-oxoguanine DNA glycosylase-1 (hOGG1) and human single-stranded DNA binding protein 1 (hSSB1). Moreover, the therapeutic potential and modalities of targeting these key proteins in cancer are discussed. CONCLUSION: It is becoming increasingly apparent that some DNA repair proteins function in multiple repair pathways. Inhibiting these factors would provide attractive strategies for the development of more effective cancer therapies.


Asunto(s)
Reparación del ADN , Neoplasias , Animales , ADN , Daño del ADN , Humanos , Oxidación-Reducción
11.
Front Oncol ; 10: 1256, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850380

RESUMEN

Despite advances in our understanding of the molecular biology of the disease and improved therapeutics, lung cancer remains the most common cause of cancer-related deaths worldwide. Therefore, an unmet need remains for improved treatments, especially in advanced stage disease. Genomic instability is a universal hallmark of all cancers. Many of the most commonly prescribed chemotherapeutics, including platinum-based compounds such as cisplatin, target the characteristic genomic instability of tumors by directly damaging the DNA. Chemotherapies are designed to selectively target rapidly dividing cells, where they cause critical DNA damage and subsequent cell death (1, 2). Despite the initial efficacy of these drugs, the development of chemotherapy resistant tumors remains the primary concern for treatment of all lung cancer patients. The correct functioning of the DNA damage repair machinery is essential to ensure the maintenance of normal cycling cells. Dysregulation of these pathways promotes the accumulation of mutations which increase the potential of malignancy. Following the development of the initial malignancy, the continued disruption of the DNA repair machinery may result in the further progression of metastatic disease. Lung cancer is recognized as one of the most genomically unstable cancers (3). In this review, we present an overview of the DNA damage repair pathways and their contributions to lung cancer disease occurrence and progression. We conclude with an overview of current targeted lung cancer treatments and their evolution toward combination therapies, including chemotherapy with immunotherapies and antibody-drug conjugates and the mechanisms by which they target DNA damage repair pathways.

12.
Nat Commun ; 10(1): 5501, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31796734

RESUMEN

The DNA repair capacity of human cells declines with age, in a process that is not clearly understood. Mutation of the nuclear envelope protein barrier-to-autointegration factor 1 (Banf1) has previously been shown to cause a human progeroid disorder, Néstor-Guillermo progeria syndrome (NGPS). The underlying links between Banf1, DNA repair and the ageing process are unknown. Here, we report that Banf1 controls the DNA damage response to oxidative stress via regulation of poly [ADP-ribose] polymerase 1 (PARP1). Specifically, oxidative lesions promote direct binding of Banf1 to PARP1, a critical NAD+-dependent DNA repair protein, leading to inhibition of PARP1 auto-ADP-ribosylation and defective repair of oxidative lesions, in cells with increased Banf1. Consistent with this, cells from patients with NGPS have defective PARP1 activity and impaired repair of oxidative lesions. These data support a model whereby Banf1 is crucial to reset oxidative-stress-induced PARP1 activity. Together, these data offer insight into Banf1-regulated, PARP1-directed repair of oxidative lesions.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/metabolismo , Estrés Oxidativo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , Mutación/genética , Poli(ADP-Ribosa) Polimerasa-1/química , Poli Adenosina Difosfato Ribosa/metabolismo , Progeria/metabolismo , Unión Proteica , Dominios Proteicos
13.
Antioxid Redox Signal ; 12(7): 797-808, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19803747

RESUMEN

Reactive oxygen species (ROS) are a primary cause of cellular damage that leads to cell death. In cells, protection from ROS-induced damage and maintenance of the redox balance is mediated to a large extent by selenoproteins, a distinct family of proteins that contain selenium in form of selenocysteine (Sec) within their active site. Incorporation of Sec requires the Sec-insertion sequence element (SECIS) in the 3'-untranslated region of selenoproteins mRNAs and the SECIS-binding protein 2 (SBP2). Previous studies have shown that SBP2 is required for the Sec-incorporation mechanism; however, additional roles of SBP2 in the cell have remained undefined. We herein show that depletion of SBP2 by using antisense oligonucleotides (ASOs) causes oxidative stress and induction of caspase- and cytochrome c-dependent apoptosis. Cells depleted of SBP2 have increased levels of ROS, which lead to cellular stress manifested as 8-oxo-7,8-dihydroguanine (8-oxo-dG) DNA lesions, stress granules, and lipid peroxidation. Small-molecule antioxidants N-acetylcysteine, glutathione, and alpha-tocopherol only marginally reduced ROS and were unable to rescue cells fully from apoptosis, indicating that apoptosis might be directly mediated by selenoproteins. Our results demonstrate that SBP2 is required for protection against ROS-induced cellular damage and cell survival.


Asunto(s)
Supervivencia Celular , Estrés Oxidativo , Proteínas de Unión al ARN/metabolismo , Selenocisteína/metabolismo , Selenoproteínas/metabolismo , Animales , Antioxidantes/metabolismo , Apoptosis/fisiología , Caspasas/metabolismo , Ciclo Celular/fisiología , Línea Celular , Daño del ADN , Humanos , Peroxidación de Lípido , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Proteínas de Unión al ARN/genética , Especies Reactivas de Oxígeno/metabolismo , Selenocisteína/genética , Selenoproteínas/genética
14.
Radiat Environ Biophys ; 45(4): 267-76, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17047977

RESUMEN

DNA double-strand breaks (DSBs) and locally multiply damaged sites (LMDS) induced by ionizing radiation (IR) are considered to be very genotoxic in mammalian cells. LMDS consist of two or more clustered DNA lesions including oxidative damage locally formed within one or two helical turns by single radiation tracks following local energy deposition. They are thought to be frequently induced by IR but not by normal oxidative metabolism. In mammalian cells, LMDS are detected after specific enzymatic treatments transforming these lesions into additional DSBs that can be revealed by pulsed-field gel electrophoresis (PFGE). Here, we studied radiation-induced DSBs and LMDS in Chinese hamster ovary cells (CHO-K1). After addition of the iron chelator deferoxamine (DFO) or the antioxidant glutathione (GSH) to the cell lysis solution, we observed reduced spontaneous DNA fragmentation and a clear dose-dependent increase of radiation-induced DSBs. LMDS induction, however, was close to background levels, independently of dose, dose rate, temperature and radiation quality (low and high LET). Under these experimental conditions, artefactual oxidative DNA damage during cell lysis could not anymore be confounded with LMDS. We thus show that radiation-induced LMDS composed of oxidized purines or pyrimidines are much less frequent than hitherto reported, and suggest that they may be of minor importance in the radiation response than DSBs. We speculate that complex DSBs with oxidized ends may constitute the main part of radiation-induced clustered lesions. However, this needs further studies.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de la radiación , Fragmentación del ADN/efectos de la radiación , Rayos gamma , Estrés Oxidativo/efectos de la radiación , Animales , Argón , Células CHO , Cricetinae , Cricetulus , Deferoxamina , Relación Dosis-Respuesta en la Radiación , Electroforesis en Gel de Campo Pulsado , Glutatión , Temperatura
15.
Can J Physiol Pharmacol ; 82(2): 125-32, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15052293

RESUMEN

DNA double-strand breaks (DSBs) are highly cell damaging. We asked whether for a given dose a longer irradiation time would be advantageous for the repair of DSBs. Varying the gamma-irradiation dose and its delivery time (0.05 Gy/min low dose-rate (LDR) compared with 3.5 Gy/min high dose-rate), confluent Chinese hamster ovary cells (CHO-K1) and Ku80 mutant cells (xrs-6) deficient in nonhomologous end-joining (NHEJ) were irradiated in agarose plugs at room temperature using a cesium-137 gamma-ray source. We used pulsed-field gel electrophoresis (PFGE) to measure DSBs in terms of the fraction of activity released (FAR). At LDR, one third of DSBs were repaired in CHO-K1 but not in xrs-6 cells, indicating the involvement of NHEJ in the repair of gamma-induced DSBs at a prolonged irradiation incubation time. To improve DSB measurements, we introduced in our PFGE protocol an antioxidant at the cell lysis step, thus avoiding free-radical side reactions on DNA and spurious DSBs. Addition of the metal chelator deferoxamine (DFO) decreased more efficiently the basal DSB level than did reduced glutathione (GSH), showing that measuring DSBs in the absence of DFO reduces precision and underestimates the role of NHEJ in the dose-rate effect on DSB yield.


Asunto(s)
Daño del ADN , Reparación del ADN/efectos de la radiación , Animales , Células CHO , Cricetinae , Cricetulus , Relación Dosis-Respuesta en la Radiación , Electroforesis en Gel de Agar , Rayos gamma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA