Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(14): 140401, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37084453

RESUMEN

Motivated by recent experiments, we investigate the Lieb-Liniger gas initially prepared in an out-of-equilibrium state that is Gaussian in terms of the phonons, namely whose density matrix is the exponential of an operator quadratic in terms of phonon creation and annihilation operators. Because the phonons are not exact eigenstates of the Hamiltonian, the gas relaxes to a stationary state at very long times whose phonon population is a priori different from the initial one. Thanks to integrability, that stationary state needs not be a thermal state. Using the Bethe-ansatz mapping between the exact eigenstates of the Lieb-Liniger Hamiltonian and those of a noninteracting Fermi gas and bosonization techniques we completely characterize the stationary state of the gas after relaxation and compute its phonon population distribution. We apply our results to the case where the initial state is an excited coherent state for a single phonon mode, and we compare them to exact results obtained in the hard-core limit.

2.
Mol Genet Metab ; 135(3): 206-214, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35058124

RESUMEN

BACKGROUND: In patients with acute intermittent porphyria (AIP), induction of delta aminolevulinic acid synthase 1 (ALAS1) leads to haem precursor accumulation that may cause recurring acute attacks. In a recent phase III trial, givosiran significantly reduced the attack rate in severe AIP patients. Frequent adverse events were injection-site reaction, fatigue, nausea, chronic kidney disease and increased alanine aminotransferase. OBJECTIVES: To describe the efficacy and safety of givosiran based on a personalized medical approach. METHODS: We conducted a retrospective patient file study in 25 severe AIP patients treated with givosiran in France. We collected data on clinical and biochemical efficacy along with reports of adverse events. RESULTS: Givosiran drastically reduced the attack rate in our cohort, as 96% were attack-free at the time of the study. The sustained efficacy of givosiran in most patients allowed us to personalize dosing frequency. In 42%, givosiran was only given when haem precursor levels were increasing. Our data suggest that givosiran is most effective when given early in the disease course. We confirmed a high prevalence of adverse events. One patient discontinued treatment due to acute pancreatitis. All patients had hyperhomocysteinemia, and all patients with initial homocysteine levels available showed an increase under treatment. In this context, one patient was diagnosed with pulmonary embolism. CONCLUSION: The sustained effect of givosiran allowed a decrease in dosing frequency without compromising treatment efficacy. The high prevalence of adverse events emphasizes the importance of restricting the treatment to severe AIP and administering the minimum effective dose for each patient.


Asunto(s)
Pancreatitis , Porfiria Intermitente Aguda , Acetilgalactosamina/análogos & derivados , Enfermedad Aguda , Hemo , Humanos , Pancreatitis/tratamiento farmacológico , Porfiria Intermitente Aguda/tratamiento farmacológico , Medicina de Precisión , Pirrolidinas , Estudios Retrospectivos
3.
Phys Rev Lett ; 121(20): 200401, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30500237

RESUMEN

We report the demonstration of cooling by three-body losses in a Bose gas. We use a harmonically confined one-dimensional (1D) Bose gas in the quasicondensate regime and, as the atom number decreases under the effect of three-body losses, the temperature T drops up to a factor of 4. The ratio k_{B}T/(mc^{2}) stays close to 0.64, where m is the atomic mass and c the speed of sound in the trap center. The dimensionless 1D interaction parameter γ, evaluated at the trap center, spans more than 2 orders of magnitudes over the different sets of data. We present a theoretical analysis for a homogeneous 1D gas in the quasicondensate regime, which predicts that the ratio k_{B}T/(mc^{2}) converges towards 0.6 under the effect of three-body losses. More sophisticated theoretical predictions that take into account the longitudinal harmonic confinement and transverse effects are in agreement within 30% with experimental data.

4.
Phys Rev Lett ; 116(5): 050402, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26894693

RESUMEN

Analyzing the noise in the momentum profiles of single realizations of one-dimensional Bose gases, we present the experimental measurement of the full momentum-space density correlations ⟨δn_{p}δn_{p^{'}}⟩, which are related to the two-body momentum correlation function. Our data span the weakly interacting region of the phase diagram, going from the ideal Bose gas regime to the quasicondensate regime. We show experimentally that the bunching phenomenon, which manifests itself as super-Poissonian local fluctuations in momentum space, is present in all regimes. The quasicondensate regime is, however, characterized by the presence of negative correlations between different momenta, in contrast to the Bogolyubov theory for Bose condensates, predicting positive correlations between opposite momenta. Our data are in good agreement with ab initio calculations.

5.
Phys Rev Lett ; 116(16): 169901, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27152828

RESUMEN

This corrects the article DOI: 10.1103/PhysRevLett.113.035301.

6.
Phys Rev Lett ; 113(3): 035301, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-25083651

RESUMEN

We measure the position- and momentum-space breathing dynamics of trapped one-dimensional Bose gases at finite temperature. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking temperature into account is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism due to the repulsive interactions. Such a mechanism is predicted for a fermionized system, and has not been observed to date. The disappearance of the frequency doubling through the crossover is mapped out experimentally, giving insights into the dynamics of the breathing evolution.

7.
Phys Rev Lett ; 106(23): 230405, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21770488

RESUMEN

We report on local, in situ measurements of atom number fluctuations in slices of a one-dimensional Bose gas on an atom chip setup. By using current modulation techniques to prevent cloud fragmentation, we are able to probe the crossover from weak to strong interactions. For weak interactions, fluctuations go continuously from super- to sub-Poissonian as the density is increased, which is a signature of the transition between the subregimes where the two-body correlation function is dominated, respectively, by thermal and quantum contributions. At stronger interactions, the super-Poissonian region disappears, and the fluctuations go directly from Poissonian to sub-Poissonian, as expected for a "fermionized" gas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA