Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34845017

RESUMEN

One-third of all Neotropical forests are secondary forests that regrow naturally after agricultural use through secondary succession. We need to understand better how and why succession varies across environmental gradients and broad geographic scales. Here, we analyze functional recovery using community data on seven plant characteristics (traits) of 1,016 forest plots from 30 chronosequence sites across the Neotropics. By analyzing communities in terms of their traits, we enhance understanding of the mechanisms of succession, assess ecosystem recovery, and use these insights to propose successful forest restoration strategies. Wet and dry forests diverged markedly for several traits that increase growth rate in wet forests but come at the expense of reduced drought tolerance, delay, or avoidance, which is important in seasonally dry forests. Dry and wet forests showed different successional pathways for several traits. In dry forests, species turnover is driven by drought tolerance traits that are important early in succession and in wet forests by shade tolerance traits that are important later in succession. In both forests, deciduous and compound-leaved trees decreased with forest age, probably because microclimatic conditions became less hot and dry. Our results suggest that climatic water availability drives functional recovery by influencing the start and trajectory of succession, resulting in a convergence of community trait values with forest age when vegetation cover builds up. Within plots, the range in functional trait values increased with age. Based on the observed successional trait changes, we indicate the consequences for carbon and nutrient cycling and propose an ecologically sound strategy to improve forest restoration success.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Modelos Biológicos , Clima Tropical
2.
Nature ; 530(7589): 211-4, 2016 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-26840632

RESUMEN

Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.


Asunto(s)
Biomasa , Bosques , Árboles/crecimiento & desarrollo , Clima Tropical , Carbono/metabolismo , Ciclo del Carbono , Secuestro de Carbono , Ecología , Humedad , América Latina , Lluvia , Factores de Tiempo , Árboles/metabolismo
3.
Ecol Lett ; 20(11): 1448-1458, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28941076

RESUMEN

Whether successional forests converge towards an equilibrium in species composition remains an elusive question, hampered by high idiosyncrasy in successional dynamics. Based on long-term tree monitoring in second-growth (SG) and old-growth (OG) forests in Costa Rica, we show that patterns of convergence between pairs of forest stands depend upon the relative abundance of species exhibiting distinct responses to the successional gradient. For instance, forest generalists contributed to convergence between SG and OG forests, whereas rare species and old-growth specialists were a source of divergence. Overall, opposing trends in taxonomic similarity among different subsets of species nullified each other, producing a net outcome of stasis over time. Our results offer an explanation for the limited convergence observed between pairwise communities and suggest that rare species and old-growth specialists may be prone to dispersal limitation, while the dynamics of generalists and second-growth specialists are more predictable, enhancing resilience in tropical secondary forests.


Asunto(s)
Ecosistema , Bosques , Árboles/crecimiento & desarrollo , Clima Tropical , Costa Rica , Especificidad de la Especie
4.
Proc Natl Acad Sci U S A ; 111(15): 5616-21, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24706791

RESUMEN

Interspecific differences in relative fitness can cause local dominance by a single species. However, stabilizing interspecific niche differences can promote local diversity. Understanding these mechanisms requires that we simultaneously quantify their effects on demography and link these effects to community dynamics. Successional forests are ideal systems for testing assembly theory because they exhibit rapid community assembly. Here, we leverage functional trait and long-term demographic data to build spatially explicit models of successional community dynamics of lowland rainforests in Costa Rica. First, we ask what the effects and relative importance of four trait-mediated community assembly processes are on tree survival, a major component of fitness. We model trait correlations with relative fitness differences that are both density-independent and -dependent in addition to trait correlations with stabilizing niche differences. Second, we ask how the relative importance of these trait-mediated processes relates to successional changes in functional diversity. Tree dynamics were more strongly influenced by trait-related interspecific variation in average survival than trait-related responses to neighbors, with wood specific gravity (WSG) positively correlated with greater survival. Our findings also suggest that competition was mediated by stabilizing niche differences associated with specific leaf area (SLA) and leaf dry matter content (LDMC). These drivers of individual-level survival were reflected in successional shifts to higher SLA and LDMC diversity but lower WSG diversity. Our study makes significant advances to identifying the links between individual tree performance, species functional traits, and mechanisms of tropical forest succession.


Asunto(s)
Biota/fisiología , Hojas de la Planta/fisiología , Árboles/crecimiento & desarrollo , Teorema de Bayes , Costa Rica , Modelos Biológicos , Dinámica Poblacional , Especificidad de la Especie , Clima Tropical , Madera/química
5.
Ecol Lett ; 17(9): 1158-67, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24986005

RESUMEN

Theory predicts shifts in the magnitude and direction of biodiversity effects on ecosystem function (BEF) over succession, but this theory remains largely untested. We studied the relationship between aboveground tree biomass dynamics (Δbiomass) and multiple dimensions of biodiversity over 8-16 years in eight successional rainforests. We tested whether successional changes in diversity-Δbiomass correlations reflect predictions of niche theories. Diversity-Δbiomass correlations were positive early but weak later in succession, suggesting saturation of niche space with increasing diversity. Early in succession, phylogenetic diversity and functional diversity in two leaf traits exhibited the strongest positive correlations with Δbiomass, indicating complementarity or positive selection effects. In mid-successional stands, high biodiversity was associated with greater mortality-driven biomass loss, i.e. negative selection effects, suggesting successional niche trade-offs and loss of fast-growing pioneer species. Our results demonstrate that BEF relationships are dynamic across succession, thus successional context is essential to understanding BEF in a given system.


Asunto(s)
Biodiversidad , Biomasa , Modelos Biológicos , Árboles/fisiología , Filogenia , Dinámica Poblacional , Árboles/clasificación , Árboles/genética , Clima Tropical
6.
Nat Ecol Evol ; 3(6): 928-934, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31011177

RESUMEN

Tropical forests are converted at an alarming rate for agricultural use and pastureland, but also regrow naturally through secondary succession. For successful forest restoration, it is essential to understand the mechanisms of secondary succession. These mechanisms may vary across forest types, but analyses across broad spatial scales are lacking. Here, we analyse forest recovery using 1,403 plots that differ in age since agricultural abandonment from 50 sites across the Neotropics. We analyse changes in community composition using species-specific stem wood density (WD), which is a key trait for plant growth, survival and forest carbon storage. In wet forest, succession proceeds from low towards high community WD (acquisitive towards conservative trait values), in line with standard successional theory. However, in dry forest, succession proceeds from high towards low community WD (conservative towards acquisitive trait values), probably because high WD reflects drought tolerance in harsh early successional environments. Dry season intensity drives WD recovery by influencing the start and trajectory of succession, resulting in convergence of the community WD over time as vegetation cover builds up. These ecological insights can be used to improve species selection for reforestation. Reforestation species selected to establish a first protective canopy layer should, among other criteria, ideally have a similar WD to the early successional communities that dominate under the prevailing macroclimatic conditions.


Asunto(s)
Clima Tropical , Madera , Ecología , Bosques , Árboles
7.
Sci Adv ; 2(5): e1501639, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27386528

RESUMEN

Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km(2) of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.


Asunto(s)
Ciclo del Carbono , Secuestro de Carbono , Ecosistema , Bosques , Biodiversidad , Biomasa , Conservación de los Recursos Naturales , Granjas , Geografía , América Latina , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA