Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biochem J ; 445(1): 47-56, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22489865

RESUMEN

The EphA4 receptor tyrosine kinase interacts with ephrin ligands to regulate many processes, ranging from axon guidance and nerve regeneration to cancer malignancy. Thus antagonists that inhibit ephrin binding to EphA4 could be useful for a variety of research and therapeutic applications. In the present study we characterize the binding features of three antagonistic peptides (KYL, APY and VTM) that selectively target EphA4 among the Eph receptors. Isothermal titration calorimetry analysis demonstrated that all three peptides bind to the ephrin-binding domain of EphA4 with low micromolar affinity. Furthermore, the effects of a series of EphA4 mutations suggest that the peptides interact in different ways with the ephrin-binding pocket of EphA4. Chemical-shift changes observed by NMR spectroscopy upon binding of the KYL peptide involve many EphA4 residues, consistent with extensive interactions and possibly receptor conformational changes. Additionally, systematic replacement of each of the 12 amino acids of KYL and VTM identify the residues critical for EphA4, binding. The peptides exhibit a long half-life in cell culture medium which, with their substantial binding affinity and selectivity for EphA4, makes them excellent research tools to modulate EphA4 function.


Asunto(s)
Efrinas/metabolismo , Fragmentos de Péptidos/farmacología , Receptor EphA4/antagonistas & inhibidores , Receptor EphA4/metabolismo , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Calorimetría , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Humanos , Procesamiento de Imagen Asistido por Computador , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación/genética , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Unión Proteica , Conformación Proteica , Puntos Cuánticos , Receptor EphA4/genética , Transducción de Señal
2.
J Cell Biol ; 178(7): 1295-307, 2007 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-17875741

RESUMEN

Remodeling of dendritic spines is believed to modulate the function of excitatory synapses. We previously reported that the EphA4 receptor tyrosine kinase regulates spine morphology in hippocampal pyramidal neurons, but the signaling pathways involved were not characterized (Murai, K.K., L.N. Nguyen, F. Irie, Y. Yamaguchi, and E.B. Pasquale. 2003. Nat. Neurosci. 6:153-160). In this study, we show that EphA4 activation by ephrin-A3 in hippocampal slices inhibits integrin downstream signaling pathways. EphA4 activation decreases tyrosine phosphorylation of the scaffolding protein Crk-associated substrate (Cas) and the tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) and also reduces the association of Cas with the Src family kinase Fyn and the adaptor Crk. Consistent with this, EphA4 inhibits beta1-integrin activity in neuronal cells. Supporting a functional role for beta1 integrin and Cas inactivation downstream of EphA4, the inhibition of integrin or Cas function induces spine morphological changes similar to those associated with EphA4 activation. Furthermore, preventing beta1-integrin inactivation blocks the effects of EphA4 on spines. Our results support a model in which EphA4 interferes with integrin signaling pathways that stabilize dendritic spines, thus modulating synaptic interactions with the extracellular environment.


Asunto(s)
Espinas Dendríticas/enzimología , Integrina beta1/metabolismo , Receptor EphA4/metabolismo , Transducción de Señal , Animales , Adhesión Celular/efectos de los fármacos , Proteína Sustrato Asociada a CrK/química , Proteína Sustrato Asociada a CrK/deficiencia , Espinas Dendríticas/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Efrina-A3/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-crk/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos , Dominios Homologos src
3.
J Neurosci ; 27(51): 14205-15, 2007 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-18094260

RESUMEN

Eph receptors play critical roles in the establishment and remodeling of neuronal connections, but the signaling pathways involved are not fully understood. We have identified a novel interaction between the C terminus of the EphA4 receptor and the PDZ domain of the GTPase-activating protein spine-associated RapGAP (SPAR). In neuronal cells, this binding mediates EphA4-dependent inactivation of the closely related GTPases Rap1 and Rap2, which have recently been implicated in the regulation of dendritic spine morphology and synaptic plasticity. We show that SPAR-mediated inactivation of Rap1, but not Rap2, is critical for ephrin-A-dependent growth cone collapse in hippocampal neurons and decreased integrin-mediated adhesion in neuronal cells. Distinctive effects of constitutively active Rap1 and Rap2 on the morphology of growth cones and dendritic spines support the idea that these two GTPases have different functions in neurons. Together, our data implicate SPAR as an important signaling intermediate that links the EphA4 receptor with Rap GTPase function in the regulation of neuronal morphology.


Asunto(s)
Proteínas Portadoras/fisiología , Neuronas/citología , Neuronas/enzimología , Receptor EphA4/fisiología , Proteínas Activadoras de ras GTPasa/antagonistas & inhibidores , Proteínas Activadoras de ras GTPasa/metabolismo , Animales , Proteínas Portadoras/genética , Línea Celular Transformada , Pollos , Espinas Dendríticas/enzimología , Espinas Dendríticas/metabolismo , Espinas Dendríticas/fisiología , Efrina-A4/metabolismo , Humanos , Ratones , Neuronas/metabolismo , Ratas , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas Activadoras de ras GTPasa/genética
4.
Mol Cell Biol ; 22(11): 3744-56, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11997510

RESUMEN

Mona/Gads is a Grb2-related, Src homology 3 (SH3) and SH2 domain-containing adapter protein whose expression is restricted to cells of hematopoietic lineage (i.e., monocytes and T lymphocytes). During monocyte/macrophage differentiation, Mona is induced and interacts with the macrophage colony-stimulating factor receptor, M-CSFR (also called Fms), suggesting that Mona could be involved in developmental signaling downstream of the M-CSFR by recruiting additional signaling proteins to the activated receptor. Our present results identify Mona as a specific partner protein for the DOS/Gab family member Gab3 in monocytic/macrophage development. Mona does not interact with Gab2; however, Gab3 also forms a complex with the Mona-related adapter Grb2. Glutathione S-transferase pull-down experiments demonstrate that the Mona and Gab3 interaction utilizes the carboxy-terminal SH3 domain of Mona and the atypical proline-rich domain of Gab3. Mona is known to interact with the phosphorylated Y697 site of the M-CSFR. The M-CSFR mutation Y697F exhibited qualitative and quantitative abnormalities in receptor and Gab3 tyrosine phosphorylation, and Mona induction was greatly reduced. The Y807F M-CSFR mutation is defective in differentiation signaling, but not growth signaling, and also fails to induce Mona protein expression. During M-CSF-stimulated macrophage differentiation of mouse bone marrow cells, Mona and Gab3 expression is coinduced, these proteins interact, and Mona engages in multimolecular complexes. These data suggest that association of Mona and Gab3 plays a specific role in mediating the M-CSFR differentiation signal.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Monocitos/citología , Monocitos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Proteínas Portadoras/química , Diferenciación Celular , Línea Celular , Expresión Génica , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Ratones , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosforilación , Receptor de Factor Estimulante de Colonias de Macrófagos/genética , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Dominios Homologos src
5.
Cell Signal ; 17(11): 1352-62, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16125055

RESUMEN

Macrophage colony-stimulating factor (M-CSF) is a physiological regulator of monocyte-macrophage lineage. Ectopic expression of the M-CSF receptor (M-CSFR, or Fms) in murine myeloid cell line FDC-P1 (FD/Fms cells) results in M-CSF-dependent macrophage differentiation. Previously, we observed that M-CSF induces two temporally distinct phases of mitogen-activated protein kinase (MAPK) phosphorylation. Here we show that levels of phosphorylated MAPK kinase MEK1 follow the same kinetics as MAPK phosphorylation, characterized by an early and transient phase (the first 30 min of M-CSF stimulation) and a late and persistent phase from 4 h of stimulation. The MEK inhibitor U0126 strongly inhibited both phases of MAPK phosphorylation as well as FD/Fms cell differentiation, indicating that MAPK may relay M-CSF differentiation signaling downstream of M-CSFR. Treatment of FD/Fms cells with U0126 during the first hour of M-CSF stimulation reversibly blocked the early phase of MAPK phosphorylation but did not affect differentiation. In contrast, U0126 still inhibited FD/Fms cell differentiation when its addition was delayed by 24 h. This demonstrated that late and persistent MEK activity is specifically required for macrophage differentiation to occur. Furthermore, disrupting Grb2-Sos complexes with a specific blocking peptide did not prevent FD/Fms cells differentiation in response to M-CSF, nor did it abolish MAPK phosphorylation. The role of phosphatidylinositol 3-kinase (PI 3-kinase), another potential regulator of the MAPK pathway, was examined using the specific inhibitor LY294002. This compound could not impede FD/Fms cell commitment to macrophage differentiation and did not significantly affect MAPK phosphorylation in response to M-CSF. Therefore, M-CSF differentiation signaling in myeloid progenitor cells is mediated through persistent MEK activity but it is not strictly dependent upon Grb2-Sos interaction or PI 3-kinase activity.


Asunto(s)
Proteína Adaptadora GRB2/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Factor Estimulante de Colonias de Macrófagos/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína Son Of Sevenless Drosofila/metabolismo , Animales , Butadienos/farmacología , Línea Celular , Cromonas/farmacología , MAP Quinasa Quinasa 1/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Morfolinas/farmacología , Células Progenitoras Mieloides/citología , Células Progenitoras Mieloides/metabolismo , Nitrilos/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Unión Proteica , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA