Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 17(22): 14417-26, 2015 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-25920409

RESUMEN

In the present work, we investigate the bonding, structures, stability and spectra of the Zn(q+)Im (where q = 0, 1, and 2) complexes, which are zeolitic imidazolate frameworks (ZIFs) and Zn-enzyme sub-units. Through a benchmark work, we used density functional theory (DFT) with dispersion correction and standard and explicitly correlated ab initio methods. For neutral Zn(0)Im, we found two stable weakly bound forms: (i) a stacked ferrocene-like complex and (ii) a planar σ-type complex. This is the first report of the Zn(0) organic compound with a stacked ferrocene-like structure. The most stable isomers of the ionic species consist of σ-type bonded complexes. The role of various types of covalent and noncovalent interactions within these complexes is discussed after performing vibrational, NBO, charge and orbital analyses. For neutral species, van der Waals (vdWs) and charge transfer through covalent as well as noncovalent interactions are in action; whereas the bonding is dominated by charge transfer from Zn to Im within the ionic species. These findings are important to understand, at the microscopic level, the structure and the bonding within the ZIFs and the Zn-enzymes. Moreover, we establish the ability and reliability of M05-2X and PBE0 functionals for the simultaneous correct description of covalent and noncovalent interactions since this DFT leads to a close agreement with post-Hartree-Fock methods. The newly launched M11 functional is also suited for the description of noncovalent interactions. Therefore, M05-2X and PBE0 functionals are recommended for studying the larger complexes formed by Zn and Im, such as the ZIFs and Zn-enzymes.


Asunto(s)
Imidazoles/química , Modelos Químicos , Simulación del Acoplamiento Molecular , Compuestos Organometálicos/química , Teoría Cuántica , Zinc/química , Algoritmos , Sitios de Unión , Simulación por Computador
2.
J Phys Chem A ; 119(49): 11928-40, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26565743

RESUMEN

Using density functional theory (DFT) with dispersion correction and ab initio post Hartree-Fock methods, we treat the bonding, the structure, the stability, and the spectroscopy of the complexes between Zn(q+) and imidazole (Im), Zn(q+)Imn (where q = 0, 1 and 2; n = 1-4). These entities are subunits of zeolitic imidazolate frameworks (ZIFs) and Zn-enzymes, which possess relevant roles in industrial and biological domains, respectively. We also investigate the Imn (n = 2-4) clusters for comparison. For each species, we determine several new structures that were not found previously. Our calculations show a competition between atomic metal solvation, by either σ-type interactions or π-stacking type interaction, and proton transfer through hydrogen bonding (H-bonding) in charged species. This results in several geometrical environments around the metal. These are connected with structural properties and the functional role of Zn cation within ZIFs and Zn-enzymes. Moreover, we show that the Zn(2+)Imn subunits do not absorb in the visible domain, which may be related to the photostability of ZIFs. Our findings are important for the development of new applications of ZIFs and metalloenzymes.


Asunto(s)
Complejos de Coordinación/química , Enzimas , Imidazoles/química , Teoría Cuántica , Zinc/química , Simulación por Computador , Enzimas/química , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA