Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Physiol Plant ; 156(1): 84-96, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25974219

RESUMEN

Soil water deficits applied at different rates and for different durations can decrease both stomatal conductance (gs ) and leaf water potential (Ψleaf ). Understanding the physiological mechanisms regulating these responses is important in sustainable irrigation scheduling. Glasshouse-grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at various fractions of plant evapotranspiration (100, 75 and 50% ET) for 20 days or irrigation was withheld for 4 days. Xylem sap was collected and gs and Ψleaf were measured on days 15 and 20, and on days 16-19 for the respective treatments. Xylem sap pH and NO3 (-) and Ca(2+) concentrations did not differ between irrigation treatments. Xylem abscisic acid (ABA) concentrations ([ABA]xyl ) increased within 24 h of irrigation being withheld whilst gs and Ψleaf decreased. Supplying irrigation at a fraction of daily ET produced a similar relationship between [ABA]xyl and gs , but did not change Ψleaf . Treatment differences occurred independently of whether Ψleaf was measured in whole leaves with a pressure chamber, or in the lamina with a thermocouple psychrometer. Plants that were irrigated daily showed lower [ABA]xyl than plants from which irrigation was withheld, even at comparable soil moisture content. This implies that regular re-watering attenuates ABA signaling due to maintenance of soil moisture in the upper soil levels. Crucially, detached leaves supplied with synthetic ABA showed a similar relationship between [ABA]xyl and gs as intact plants, suggesting that stomatal closure of P. hortorum in response to soil water deficit is primarily an ABA-induced response, independent of changes in Ψleaf .


Asunto(s)
Ácido Abscísico/metabolismo , Pelargonium/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Agua/fisiología , Riego Agrícola , Desecación , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Suelo/química , Factores de Tiempo , Xilema/fisiología
2.
Physiol Plant ; 158(1): 23-33, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26910008

RESUMEN

The physiological response of plants to different irrigation frequencies may affect plant growth and water use efficiency (WUE; defined as shoot biomass/cumulative irrigation). Glasshouse-grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at 100% of plant evapotranspiration (ET) (well-watered; WW), or at 50% ET applied either daily [frequent deficit irrigation (FDI)] or cumulatively every 4 days [infrequent deficit irrigation (IDI)], for 24 days. Both FDI and IDI applied the same irrigation volume. Xylem sap was collected from the leaves, and stomatal conductance (gs ) and leaf water potential (Ψleaf ) measured every 2 days. As soil moisture decreased, gs decreased similarly under both FDI and IDI throughout the experiment. Ψleaf was maintained under IDI and increased under FDI. Leaf xylem abscisic acid (ABA) concentrations ([X-ABA]leaf ) increased as soil moisture decreased under both IDI and FDI, and was strongly correlated with decreased gs , but [X-ABA]leaf was attenuated under FDI throughout the experiment (at the same level of soil moisture as IDI plants). These physiological changes corresponded with differences in plant production. Both FDI and IDI decreased growth compared with WW plants, and by the end of the experiment, FDI plants also had a greater shoot fresh weight (18%) than IDI plants. Although both IDI and FDI had higher WUE than WW plants during the first 10 days of the experiment (when biomass did not differ between treatments), the deficit irrigation treatments had lower WUE than WW plants in the latter stages when growth was limited. Thus, ABA-induced stomatal closure may not always translate to increased WUE (at the whole plant level) if vegetative growth shows a similar sensitivity to soil drying, and growers must adapt their irrigation scheduling according to crop requirements.


Asunto(s)
Ácido Abscísico/metabolismo , Pelargonium/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Agua/fisiología , Riego Agrícola , Biomasa , Pelargonium/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Estomas de Plantas/crecimiento & desarrollo , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Suelo , Xilema/crecimiento & desarrollo , Xilema/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA