Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Microbiology (Reading) ; 170(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38421161

RESUMEN

Two clinically important subspecies, Francisella tularensis subsp. tularensis (type A) and F. tularensis subsp. holarctica (type B) are responsible for most tularaemia cases, but these isolates typically form a weak biofilm under in vitro conditions. Phase variation of the F. tularensis lipopolysaccharide (LPS) has been reported in these subspecies, but the role of variation is unclear as LPS is crucial for virulence. We previously demonstrated that a subpopulation of LPS variants can constitutively form a robust biofilm in vitro, but it is unclear whether virulence was affected. In this study, we show that biofilm-forming variants of both fully virulent F. tularensis subspecies were highly attenuated in the murine tularaemia model by multiple challenge routes. Genomic sequencing was performed on these strains, which revealed that all biofilm-forming variants contained a lesion within the wbtJ gene, a formyltransferase involved in O-antigen synthesis. A ΔwbtJ deletion mutant recapitulated the biofilm, O-antigen and virulence phenotypes observed in natural variants and could be rescued through complementation with a functional wbtJ gene. Since the spontaneously derived biofilm-forming isolates in this study were a subpopulation of natural variants, reversion events to the wbtJ gene were detected that eliminated the phenotypes associated with biofilm variants and restored virulence. These results demonstrate a role for WbtJ in biofilm formation, LPS variation and virulence of F. tularensis.


Asunto(s)
Francisella tularensis , Francisella , Transferasas de Hidroximetilo y Formilo , Tularemia , Animales , Ratones , Francisella tularensis/genética , Antígenos O/genética , Lipopolisacáridos , Transferasas de Hidroximetilo y Formilo/genética , Variación de la Fase , Mutación
2.
Anal Biochem ; 622: 114116, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33716126

RESUMEN

Arabinose 5-phosphate isomerase (API) catalyzes the reversible isomerization of Ribulose 5-phosphate (Ru5P) to Arabinose 5-Phosphate (Ar5P) for the production of 3-deoxy-2-octulosonic acid 8-phosphate (KDO), a component of bacterial lipopolysaccharide (LPS) of gram-negative bacteria. API is an attractive target for therapeutic development against gram-negative bacterial pathogens. The current assay method of API activity utilizes a general reaction for keto sugar determination in a secondary, 3-h color development reaction with 25 N sulfuric acid which poses hazard to both personnel and instrumentation. We therefore aimed to develop a more user friendly assay of the enzyme. Since Ru5P absorbs in the UV region and contains at least 2 chiral centers, it can be expected to display circular dichroism (CD). A wavelength scan revealed indeed Ru5P displays a pronounced negative ellipticity of 30,560 mDeg M-1cm-1 at 279 nm in Tris buffer pH 9.1 but Ar5P does not have any CD. API enzymatic reactions were monitored directly and continuously in real time by following the disappearance of CD from the Ru5P substrate, or by the appearance of CD from Ar5P substrate. The CD signal at this wavelength was not affected by absorption of the enzyme protein or of small molecules, or turbidity of the solution. Common additives in protein and enzyme reaction mixtures such as detergents, metals, and 5% dimethylsulfoxide did not interfere with the CD signal. Assay reactions of 1-3 min consistently yielded reproducible results. Introduction of accessories in a spectropolarimeter will easily adapt this assay to high throughput format for screening thousands of small molecules as inhibitor candidates of API.


Asunto(s)
Isomerasas Aldosa-Cetosa/análisis , Dicroismo Circular/métodos , Pruebas de Enzimas/métodos , Proteínas Bacterianas/metabolismo , Catálisis , Francisella tularensis/metabolismo , Lipopolisacáridos/metabolismo , Pentosafosfatos/metabolismo , Ribulosafosfatos/análisis , Ribulosafosfatos/metabolismo , Especificidad por Sustrato , Azúcares Ácidos/metabolismo , Fosfatos de Azúcar/metabolismo
3.
Emerg Infect Dis ; 25(5): 919-926, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30681072

RESUMEN

For safety, designated Select Agents in tissues must be inactivated and viability tested before the tissue undergoes further processing and analysis. In response to the shipping of samples of "inactivated" Bacillus anthracis that inadvertently contained live spores to nonregulated entities and partners worldwide, the Federal Register now mandates in-house validation of inactivation procedures and standardization of viability testing to detect live organisms in samples containing Select Agents that have undergone an inactivation process. We tested and validated formaldehyde and glutaraldehyde inactivation procedures for animal tissues infected with virulent B. anthracis, Burkholderia pseudomallei, Francisella tularensis, and Yersinia pestis. We confirmed that our fixation procedures for tissues containing these Tier 1 Select Agents resulted in complete inactivation and that our validated viability testing methods do not interfere with detection of live organisms. Institutions may use this work as a guide to develop and conduct their own testing to comply with the policy.


Asunto(s)
Bacterias/efectos de los fármacos , Desinfectantes/farmacología , Formaldehído/farmacología , Glutaral/farmacología , Viabilidad Microbiana/efectos de los fármacos , Animales , Cobayas , Especificidad de Órganos , Esporas Bacterianas/efectos de los fármacos , Factores de Tiempo
4.
Microb Pathog ; 137: 103742, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31513897

RESUMEN

Low molecular mass penicillin binding proteins (LMM PBP) are bacterial enzymes involved in the final steps of peptidoglycan biosynthesis. In Escherichia coli, most LMM PBP exhibit dd-carboxypeptidase activity, are not essential for growth in routine laboratory media, and contributions to virulent phenotypes remain largely unknown. The Francisella tularensis Schu S4 genome harbors the dacD gene (FTT_1029), which encodes a LMM PBP with homology to PBP6b of E. coli. Disruption of this locus in the fully virulent Schu S4 strain resulted in a mutant that could not grow in Chamberlain's Defined Medium and exhibited severe morphological defects. Further characterization studies demonstrated that the growth defects of the dacD mutant were pH-dependent, and could be partially restored by growth at neutral pH or fully restored by genetic complementation. Infection of murine macrophage-like cells showed that the Schu S4 dacD mutant is capable of intracellular replication. However, this mutant was attenuated in BALB/c mice following intranasal challenge (LD50 = 603 CFU) as compared to mice challenged with the parent (LD50 = 1 CFU) or complemented strain (LD50 = 1 CFU). Additionally, mice that survived infection with the dacD mutant showed significant protection against subsequent challenge with the parent strain. Collectively, these results indicate that the DacD protein of F. tularensis is essential for growth in low pH environments and virulence in vivo. These results also suggest that a PBP mutant could serve as the basis of a novel, live attenuated vaccine strain.


Asunto(s)
Francisella tularensis/enzimología , Francisella tularensis/patogenicidad , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Tularemia/inmunología , Animales , Proteínas Bacterianas/genética , Vacunas Bacterianas/inmunología , Línea Celular , Modelos Animales de Enfermedad , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Francisella tularensis/genética , Pulmón/microbiología , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Mutación , Proteínas de Unión a las Penicilinas , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética , Tularemia/microbiología , Vacunas Atenuadas/inmunología , Virulencia , Factores de Virulencia/genética
5.
Appl Environ Microbiol ; 84(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29654186

RESUMEN

In 2015, a laboratory of the United States Department of Defense (DoD) inadvertently shipped preparations of gamma-irradiated spores of Bacillus anthracis that contained live spores. In response, a systematic evidence-based method for preparing, concentrating, irradiating, and verifying the inactivation of spore materials was developed. We demonstrate the consistency of spore preparations across multiple biological replicates and show that two different DoD institutions independently obtained comparable dose-inactivation curves for a monodisperse suspension of B. anthracis spores containing 3 × 1010 CFU. Spore preparations from three different institutions and three strain backgrounds yielded similar decimal reduction (D10) values and irradiation doses required to ensure sterility (DSAL) to the point at which the probability of detecting a viable spore is 10-6 Furthermore, spores of a genetically tagged strain of B. anthracis strain Sterne were used to show that high densities of dead spores suppress the recovery of viable spores. Together, we present an integrated method for preparing, irradiating, and verifying the inactivation of spores of B. anthracis for use as standard reagents for testing and evaluating detection and diagnostic devices and techniques.IMPORTANCE The inadvertent shipment by a U.S. Department of Defense (DoD) laboratory of live Bacillus anthracis (anthrax) spores to U.S. and international destinations revealed the need to standardize inactivation methods for materials derived from biological select agents and toxins (BSAT) and for the development of evidence-based methods to prevent the recurrence of such an event. Following a retrospective analysis of the procedures previously employed to generate inactivated B. anthracis spores, a study was commissioned by the DoD to provide data required to support the production of inactivated spores for the biodefense community. The results of this work are presented in this publication, which details the method by which spores can be prepared, irradiated, and tested, such that the chance of finding residual living spores in any given preparation is 1/1,000,000. These irradiated spores are used to test equipment and methods for the detection of agents of biological warfare and bioterrorism.


Asunto(s)
Bacillus anthracis/efectos de la radiación , Rayos gamma , Viabilidad Microbiana/efectos de la radiación , Esporas Bacterianas/efectos de la radiación , Esterilización/métodos , Bacillus anthracis/fisiología , Técnicas Microbiológicas/métodos , Estudios Retrospectivos , Esporas Bacterianas/fisiología
6.
Infect Immun ; 82(8): 3405-16, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24891109

RESUMEN

The antiphagocytic capsule of Bacillus anthracis is a major virulence factor. We hypothesized that it may also mediate virulence through inhibition of the host's immune responses. During an infection, the capsule exists attached to the bacterial surface but also free in the host tissues. We sought to examine the impact of free capsule by assessing its effects on human monocytes and immature dendritic cells (iDCs). Human monocytes were differentiated into iDCs by interleukin-4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF) over 7 days in the presence of capsule derived from wild-type encapsulated B. anthracis Ames (WT) or a control preparation from an isogenic B. anthracis Ames strain that produces only 2% of the capsule of the WT (capA mutant). WT capsule consistently induced release of IL-8 and IL-6 while the capA mutant control preparation elicited either no response or only a minimal release of IL-8. iDCs that were differentiated in the presence of WT capsule had increased side scatter (SSC), a measure of cellular complexity, when assessed by flow cytometry. iDCs differentiated in the presence of WT capsule also matured less well in response to subsequent B. anthracis peptidoglycan (Ba PGN) exposure, with reduced upregulation of the chemokine receptor CCR7, reduced CCR7-dependent chemotaxis, and reduced release of certain cytokines. Exposure of naive differentiated control iDCs to WT capsule did not alter cell surface marker expression but did elicit IL-8. These results indicate that free capsule may contribute to the pathogenesis of anthrax by suppressing the responses of immune cells and interfering with the maturation of iDCs.


Asunto(s)
Bacillus anthracis/inmunología , Cápsulas Bacterianas/inmunología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Tolerancia Inmunológica , Células Cultivadas , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo
7.
Infect Immun ; 82(12): 5035-48, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25245806

RESUMEN

Francisella tularensis is a highly infectious bacterium that causes the potentially lethal disease tularemia. This extremely virulent bacterium is able to replicate in the cytosolic compartments of infected macrophages. To invade macrophages and to cope with their intracellular environment, Francisella requires multiple virulence factors, which are still being identified. Proteins containing tetratricopeptide repeat (TPR)-like domains seem to be promising targets to investigate, since these proteins have been reported to be directly involved in virulence-associated functions of bacterial pathogens. Here, we studied the role of the FTS_0201, FTS_0778, and FTS_1680 genes, which encode putative TPR-like proteins in Francisella tularensis subsp. holarctica FSC200. Mutants defective in protein expression were prepared by TargeTron insertion mutagenesis. We found that the locus FTS_1680 and its ortholog FTT_0166c in the highly virulent Francisella tularensis type A strain SchuS4 are required for proper intracellular replication, full virulence in mice, and heat stress tolerance. Additionally, the FTS_1680-encoded protein was identified as a membrane-associated protein required for full cytopathogenicity in macrophages. Our study thus identifies FTS_1680/FTT_0166c as a new virulence factor in Francisella tularensis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Francisella tularensis/fisiología , Sitios Genéticos , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Citosol/microbiología , Modelos Animales de Enfermedad , Femenino , Francisella tularensis/genética , Francisella tularensis/crecimiento & desarrollo , Técnicas de Inactivación de Genes , Macrófagos/microbiología , Ratones Endogámicos BALB C , Mutagénesis Insercional , Tularemia/microbiología , Tularemia/patología , Virulencia , Factores de Virulencia/genética
8.
Front Immunol ; 15: 1397579, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835755

RESUMEN

Background: Yersinia pestis is the etiological agent of plague, which can manifest as bubonic, septicemic, and/or pneumonic disease. Plague is a severe and rapidly progressing illness that can only be successfully treated with antibiotics initiated early after infection. There are no FDA-approved vaccines for plague, and some vaccine candidates may be less effective against pneumonic plague than bubonic plague. Y. pestis is not known to impact males and females differently in mechanisms of pathogenesis or severity of infection. However, one previous study reported sex-biased vaccine effectiveness after intranasal Y. pestis challenge. As part of developing a safe and effective vaccine, it is essential that potential sex differences are characterized. Methods: In this study we evaluated novel vaccines in male and female BALB/c mice using a heterologous prime-boost approach and monitored survival, bacterial load in organs, and immunological correlates. Our vaccine strategy consisted of two subcutaneous immunizations, followed by challenge with aerosolized virulent nonencapsulated Y. pestis. Mice were immunized with a combination of live Y. pestis pgm- pPst-Δcaf1, live Y. pestis pgm- pPst-Δcaf1/ΔyopD, or recombinant F1-V (rF1-V) combined with adjuvants. Results: The most effective vaccine regimen was initial priming with rF1-V, followed by boost with either of the live attenuated strains. However, this and other strategies were more protective in female mice. Males had higher bacterial burden and differing patterns of cytokine expression and serum antibody titers. Male mice did not demonstrate synergy between vaccination and antibiotic treatment as repeatedly observed in female mice. Conclusions: This study provides new knowledge about heterologous vaccine strategies, sex differences in plague-vaccine efficacy, and the immunological factors that differ between male and female mice.


Asunto(s)
Ratones Endogámicos BALB C , Vacuna contra la Peste , Peste , Yersinia pestis , Animales , Femenino , Peste/prevención & control , Peste/inmunología , Masculino , Yersinia pestis/inmunología , Vacuna contra la Peste/inmunología , Vacuna contra la Peste/administración & dosificación , Ratones , Anticuerpos Antibacterianos/sangre , Caracteres Sexuales , Factores Sexuales , Modelos Animales de Enfermedad , Eficacia de las Vacunas
9.
PLoS Pathog ; 7(12): e1002469, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22241984

RESUMEN

Anthrax is a potentially fatal disease resulting from infection with Bacillus anthracis. The outcome of infection is influenced by pathogen-encoded virulence factors such as lethal toxin (LT), as well as by genetic variation within the host. To identify host genes controlling susceptibility to anthrax, a library of congenic mice consisting of strains with homozygous chromosomal segments from the LT-responsive CAST/Ei strain introgressed on a LT-resistant C57BL/6 (B6) background was screened for response to LT. Three congenic strains containing CAST/Ei regions of chromosome 11 were identified that displayed a rapid inflammatory response to LT similar to, but more severe than that driven by a LT-responsive allele of the inflammasome constituent NRLP1B. Importantly, increased response to LT in congenic mice correlated with greater resistance to infection by the Sterne strain of B. anthracis. The genomic region controlling the inflammatory response to LT was mapped to 66.36-74.67 Mb on chromosome 11, a region that encodes the LT-responsive CAST/Ei allele of Nlrp1b. However, known downstream effects of NLRP1B activation, including macrophage pyroptosis, cytokine release, and leukocyte infiltration could not fully explain the response to LT or the resistance to B. anthracis Sterne in congenic mice. Further, the exacerbated response in congenic mice is inherited in a recessive manner while the Nlrp1b-mediated response to LT is dominant. Finally, congenic mice displayed increased responsiveness in a model of sepsis compared with B6 mice. In total, these data suggest that allelic variation of one or more chromosome 11 genes in addition to Nlrp1b controls the severity of host response to multiple inflammatory stimuli and contributes to resistance to B. anthracis Sterne. Expression quantitative trait locus analysis revealed 25 genes within this region as high priority candidates for contributing to the host response to LT.


Asunto(s)
Alelos , Carbunco/genética , Bacillus anthracis , Cromosomas de los Mamíferos/genética , Variación Genética , Inmunidad Innata/genética , Animales , Carbunco/inmunología , Antígenos Bacterianos/inmunología , Toxinas Bacterianas/inmunología , Cromosomas de los Mamíferos/inmunología , Inflamación/genética , Inflamación/inmunología , Ratones , Sitios de Carácter Cuantitativo/inmunología
10.
Microb Pathog ; 57: 41-51, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23178382

RESUMEN

A transposon insertional mutagenesis spore library of the pathogen Bacillus anthracis was screened to identify mutants altered in germination kinetics. One mutant exhibited an accelerated rate of germination in association with disruption of benK. This gene encodes a putative protein with high homology to membrane transporters that facilitate benzoate transport. We hypothesized that BenK may not be only spore associated, but also have a vegetative cell role. A reporter strain with a translational fusion of benK to green fluorescent protein demonstrated that full-length BenK was present in vegetative cells and that a BenK degradation product was present in spores by detecting the reporter using fluorescence and Western blot analysis. A minimum inhibitory concentration assay indicated that vegetative cells of a benK::Kan mutant were more susceptible to the antimicrobial effects of Na-benzoate. The mutant spores germinated to a greater extent within 1 h than the wild type in an in vitro fluorescence assay. The disruption of benK also resulted in spores that were less readily phagocytosed in a macrophage assay. Despite these altered in vitro phenotypes, no apparent effect of the BenK protein on virulence in the intranasal mouse model or the guinea pig competitive assay was observed. This work shows that, although the BenK protein does not impact fitness or virulence in an infection model, it is involved in other aspects of both the spore and vegetative forms of the organism.


Asunto(s)
Bacillus anthracis/fisiología , Proteínas Bacterianas/genética , Fenotipo , Esporas Bacterianas , Antibacterianos/farmacología , Bacillus anthracis/efectos de los fármacos , Bacillus anthracis/patogenicidad , Aptitud Genética , Macrófagos/inmunología , Macrófagos/microbiología , Pruebas de Sensibilidad Microbiana , Mutación , Fagocitosis/genética , Fagocitosis/inmunología , Virulencia
11.
Hum Vaccin Immunother ; 19(3): 2277083, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37975637

RESUMEN

Francisella tularensis is one of the several biothreat agents for which a licensed vaccine is needed. To ensure vaccine protection is achieved across a range of virulent F. tularensis strains, we assembled and characterized a panel of F. tularensis isolates to be utilized as challenge strains. A promising tularemia vaccine candidate is rLVS ΔcapB/iglABC (rLVS), in which the vector is the LVS strain with a deletion in the capB gene and which additionally expresses a fusion protein comprising immunodominant epitopes of proteins IglA, IglB, and IglC. Fischer rats were immunized subcutaneously 1-3 times at 3-week intervals with rLVS at various doses. The rats were exposed to a high dose of aerosolized Type A strain Schu S4 (FRAN244), a Type B strain (FRAN255), or a tick derived Type A strain (FRAN254) and monitored for survival. All rLVS vaccination regimens including a single dose of 107 CFU rLVS provided 100% protection against both Type A strains. Against the Type B strain, two doses of 107 CFU rLVS provided 100% protection, and a single dose of 107 CFU provided 87.5% protection. In contrast, all unvaccinated rats succumbed to aerosol challenge with all of the F. tularensis strains. A robust Th1-biased antibody response was induced in all vaccinated rats against all F. tularensis strains. These results demonstrate that rLVS ΔcapB/iglABC provides potent protection against inhalational challenge with either Type A or Type B F. tularensis strains and should be considered for further analysis as a future tularemia vaccine.


Asunto(s)
Francisella tularensis , Tularemia , Ratas , Animales , Ratones , Francisella tularensis/genética , Tularemia/prevención & control , Ratas Endogámicas F344 , Vacunas Bacterianas , Vacunas Atenuadas , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
12.
J Immunol ; 184(1): 17-20, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19949100

RESUMEN

Pathogenesis of Bacillus anthracis is associated with the production of lethal toxin (LT), which activates the murine Nalp1b/Nlrp1b inflammasome and induces caspase-1-dependent pyroptotic death in macrophages and dendritic cells. In this study, we investigated the effect of allelic variation of Nlrp1b on the outcome of LT challenge and infection by B. anthracis spores. Nlrp1b allelic variation did not alter the kinetics or pathology of end-stage disease induced by purified LT, suggesting that, in contrast to previous reports, macrophage lysis does not contribute directly to LT-mediated pathology. However, animals expressing a LT-sensitive allele of Nlrp1b showed an early inflammatory response to LT and increased resistance to infection by B. anthracis. Data presented here support a model whereby LT-mediated activation of Nlrp1b and subsequent lysis of macrophages is not a mechanism used by B. anthracis to promote virulence, but rather a protective host-mediated innate immune response.


Asunto(s)
Carbunco/genética , Carbunco/inmunología , Proteínas Reguladoras de la Apoptosis/genética , Predisposición Genética a la Enfermedad , Animales , Antígenos Bacterianos/toxicidad , Bacillus anthracis/inmunología , Bacillus anthracis/patogenicidad , Toxinas Bacterianas/toxicidad , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
13.
Front Microbiol ; 13: 1099312, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713212

RESUMEN

Peptidoglycan, found within the cell wall of bacteria, is a structure critical for maintaining cell morphology and providing a protective barrier in diverse environments. Peptidoglycan is a remarkably dynamic structure that is constantly remodeled during cell growth and division by various peptidoglycan enzymes. Numerous peptidoglycan enzymes have been characterized from diverse bacteria and are highly sought after as targets for therapeutics. However, very little is known about these enzymes within the biothreat agent Francisella tularensis. As the causative agent of tularemia, F. tularensis is classified as a category A biothreat pathogen, in part due to its low infectious dose and lack of FDA-approved vaccine. Many bacterial species encode multiple peptidoglycan enzymes with redundant functions that allow for compensation if one of the enzymes are inactivated. In contrast, F. tularensis appears to lack this redundancy, indicating peptidoglycan enzymes may be completely essential for growth and could be exploited as targets for medical countermeasures. Indeed, several peptidoglycan enzymes in F. tularensis have been shown to play important roles in cell division, cell morphology, virulence, and modulation of host response. The aim of this review is to summarize findings from the current literature on peptidoglycan enzymes present in Francisella and discuss areas where future research efforts might be directed. We conclude that Francisella harbors a distinct set of peptidoglycan enzymes important for cell growth and virulence and represent potentially valuable targets for the development of novel therapeutics.

14.
Front Microbiol ; 13: 1076694, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36560950

RESUMEN

The notoriety of high-consequence human pathogens has increased in recent years and, rightfully, research efforts have focused on understanding host-pathogen interactions. Francisella tularensis has been detected in an impressively broad range of vertebrate hosts as well as numerous arthropod vectors and single-celled organisms. Two clinically important subspecies, F. tularensis subsp. tularensis (Type A) and F. tularensis subsp. holarctica (Type B), are responsible for the majority of tularemia cases in humans. The success of this bacterium in mammalian hosts can be at least partly attributed to a unique LPS molecule that allows the bacterium to avoid detection by the host immune system. Curiously, phase variation of the O-antigen incorporated into LPS has been documented in these subspecies of F. tularensis, and these variants often display some level of attenuation in infection models. While the role of phase variation in F. tularensis biology is unclear, it has been suggested that this phenomenon can aid in environmental survival and persistence. Biofilms have been established as the predominant lifestyle of many bacteria in the environment, though, it was previously thought that Type A and B isolates of F. tularensis typically form poor biofilms. Recent studies question this ideology as it was shown that alteration of the O-antigen allows robust biofilm formation in both Type A and B isolates. This review aims to explore the link between phase variation of the O-antigen, biofilm formation, and environmental persistence with an emphasis on clinically relevant subspecies and how understanding these poorly studied mechanisms could lead to new medical countermeasures to combat tularemia.

15.
Infect Immun ; 79(1): 153-66, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21041498

RESUMEN

Bacillus anthracis, the etiological agent of anthrax, is a spore-forming, Gram-positive bacterium and a category A biothreat agent. Screening of a library of transposon-mutagenized B. anthracis spores identified a mutant displaying an altered phenotype that harbored a mutated gene encoding the purine biosynthetic enzyme PurH. PurH is a bifunctional protein that catalyzes the final steps in the biosynthesis of the purine IMP. We constructed and characterized defined purH mutants of the virulent B. anthracis Ames strain. The virulence of the purH mutants was assessed in guinea pigs, mice, and rabbits. The spores of the purH mutants were as virulent as wild-type spores in mouse intranasal and rabbit subcutaneous infection models but were partially attenuated in a mouse intraperitoneal model. In contrast, the purH mutant spores were highly attenuated in guinea pigs regardless of the administration route. The reduced virulence in guinea pigs was not due solely to a germination defect, since both bacilli and toxins were detected in vivo, suggesting that the significant attenuation was associated with a growth defect in vivo. We hypothesize that an intact purine biosynthetic pathway is required for the virulence of B. anthracis in guinea pigs.


Asunto(s)
Carbunco/microbiología , Bacillus anthracis/metabolismo , Bacillus anthracis/patogenicidad , Purinas/biosíntesis , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Cobayas , Ratones , Conejos , Factores de Tiempo , Virulencia
16.
Microb Pathog ; 50(6): 314-21, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21320584

RESUMEN

At the genomic level, Yersinia pestis and Yersinia pseudotuberculosis are nearly identical but cause very different diseases. Y. pestis is the etiologic agent of plague; whereas Y. pseudotuberculosis causes a gastrointestinal infection primarily after the consumption of contaminated food. In many gram-negative pathogenic bacteria, PhoP is part of a two-component global regulatory system in which PhoQ serves as the sensor kinase, and PhoP is the response regulator. PhoP is known to activate a number of genes in many bacteria related to virulence. To determine the role of the PhoPQ proteins in Yersinia infections, primarily using aerosol challenge models, the phoP gene was deleted from the chromosome of the CO92 strain of Y. pestis and the IP32953 strain of Y. pseudotuberculosis, leading to a polar mutation of the phoPQ operon. We demonstrated that loss of phoPQ from both strains leads to a defect in intracellular growth and/or survival within macrophages. These in vitro data would suggest that the phoPQ mutants would be attenuated in vivo. However, the LD(50) for the Y. pestis mutant did not differ from the calculated LD(50) for the wild-type CO92 strain for either the bubonic or pneumonic murine models of infection. In contrast, mice challenged by aerosol with the Y. pseudotuberculosis mutant had a LD(50) value 40× higher than the wild-type strain. These results demonstrate that phoPQ are necessary for full virulence by aerosol infection with the IP32953 strain of Y. pseudotuberculosis. However, the PhoPQ proteins do not play a significant role in infection with a fully virulent strain of Y. pestis.


Asunto(s)
Proteínas Bacterianas/genética , Operón , Yersinia pestis/genética , Yersinia pestis/patogenicidad , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/patogenicidad , Animales , Proteínas Bacterianas/metabolismo , Enfermedades Gastrointestinales/microbiología , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Variación Genética , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Mutación , Peste/microbiología , Virulencia/genética , Infecciones por Yersinia pseudotuberculosis/microbiología
17.
Biomedicines ; 9(10)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34680537

RESUMEN

Plague, caused by the bacterial pathogen Yersinia pestis, is a vector-borne disease that has caused millions of human deaths over several centuries. Presently, human plague infections continue throughout the world. Transmission from one host to another relies mainly on infected flea bites, which can cause enlarged lymph nodes called buboes, followed by septicemic dissemination of the pathogen. Additionally, droplet inhalation after close contact with infected mammals can result in primary pneumonic plague. Here, we review research advances in the areas of vaccines and therapeutics for plague in context of Y. pestis virulence factors and disease pathogenesis. Plague continues to be both a public health threat and a biodefense concern and we highlight research that is important for infection mitigation and disease treatment.

18.
Front Cell Infect Microbiol ; 11: 808550, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096655

RESUMEN

Biofilms have been established as an important lifestyle for bacteria in nature as these structured communities often enable survivability and persistence in a multitude of environments. Francisella tularensis is a facultative intracellular Gram-negative bacterium found throughout much of the northern hemisphere. However, biofilm formation remains understudied and poorly understood in F. tularensis as non-substantial biofilms are typically observed in vitro by the clinically relevant subspecies F. tularensis subsp. tularensis and F. tularensis subsp. holarctica (Type A and B, respectively). Herein, we report conditions under which robust biofilm development was observed in a stochastic, but reproducible manner in Type A and B isolates. The frequency at which biofilm was observed increased temporally and appeared switch-like as progeny from the initial biofilm quickly formed biofilm in a predictable manner regardless of time or propagation with fresh media. The Type B isolates used for this study were found to more readily switch on biofilm formation than Type A isolates. Additionally, pH was found to function as an environmental checkpoint for biofilm initiation independently of the heritable cellular switch. Multiple colony morphologies were observed in biofilm positive cultures leading to the identification of a particular subset of grey variants that constitutively produce biofilm. Further, we found that constitutive biofilm forming isolates delay the onset of a viable non-culturable state. In this study, we demonstrate that a robust biofilm can be developed by clinically relevant F. tularensis isolates, provide a mechanism for biofilm initiation and examine the potential role of biofilm formation.


Asunto(s)
Francisella tularensis , Francisella , Tularemia , Biopelículas , Humanos , Lipopolisacáridos , Variación de la Fase , Tularemia/microbiología
19.
Front Microbiol ; 12: 725776, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34456897

RESUMEN

Francisella tularensis is one of several biothreat agents for which a licensed vaccine is needed to protect against this pathogen. To aid in the development of a vaccine protective against pneumonic tularemia, we generated and characterized a panel of F. tularensis isolates that can be used as challenge strains to assess vaccine efficacy. Our panel consists of both historical and contemporary isolates derived from clinical and environmental sources, including human, tick, and rabbit isolates. Whole genome sequencing was performed to assess the genetic diversity in comparison to the reference genome F. tularensis Schu S4. Average nucleotide identity analysis showed >99% genomic similarity across the strains in our panel, and pan-genome analysis revealed a core genome of 1,707 genes, and an accessory genome of 233 genes. Three of the strains in our panel, FRAN254 (tick-derived), FRAN255 (a type B strain), and FRAN256 (a human isolate) exhibited variation from the other strains. Moreover, we identified several unique mutations within the Francisella Pathogenicity Island across multiple strains in our panel, revealing unexpected diversity in this region. Notably, FRAN031 (Scherm) completely lacked the second pathogenicity island but retained virulence in mice. In contrast, FRAN037 (Coll) was attenuated in a murine pneumonic tularemia model and had mutations in pdpB and iglA which likely led to attenuation. All of the strains, except FRAN037, retained full virulence, indicating their effectiveness as challenge strains for future vaccine testing. Overall, we provide a well-characterized panel of virulent F. tularensis strains that can be utilized in ongoing efforts to develop an effective vaccine against pneumonic tularemia to ensure protection is achieved across a range F. tularensis strains.

20.
Front Immunol ; 12: 726416, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512658

RESUMEN

Relatively recent advances in plague vaccinology have produced the recombinant fusion protein F1-V plague vaccine. This vaccine has been shown to readily protect mice from both bubonic and pneumonic plague. The protection afforded by this vaccine is solely based upon the immune response elicited by the F1 or V epitopes expressed on the F1-V fusion protein. Accordingly, questions remain surrounding its efficacy against infection with non-encapsulated (F1-negative) strains. In an attempt to further optimize the F1-V elicited immune response and address efficacy concerns, we examined the inclusion of multiple toll-like receptor agonists into vaccine regimens. We examined the resulting immune responses and also any protection afforded to mice that were exposed to aerosolized Yersinia pestis. Our data demonstrate that it is possible to further augment the F1-V vaccine strategy in order to optimize and augment vaccine efficacy.


Asunto(s)
Adyuvantes Inmunológicos , Antígenos Bacterianos/inmunología , Vacuna contra la Peste/inmunología , Peste/prevención & control , Receptores Toll-Like/fisiología , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Peste/inmunología , Vacunación , Eficacia de las Vacunas , Vacunas Sintéticas/inmunología , Yersinia pestis/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA