Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Biol ; 21(8): e3002263, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37647291

RESUMEN

The target of rapamycin (TOR) signalling pathway plays a key role in the coordination between cellular growth and the cell cycle machinery in eukaryotes. The underlying molecular mechanisms by which TOR might regulate events after anaphase remain unknown. We show for the first time that one of the 2 TOR complexes in budding yeast, TORC1, blocks the separation of cells following cytokinesis by phosphorylation of a member of the NDR (nuclear Dbf2-related) protein-kinase family, the protein Cbk1. We observe that TORC1 alters the phosphorylation pattern of Cbk1 and we identify a residue within Cbk1 activation loop, T574, for which a phosphomimetic substitution makes Cbk1 catalytically inactive and, indeed, reproduces TORC1 control over cell separation. In addition, we identify the exocyst component Sec3 as a key substrate of Cbk1, since Sec3 activates the SNARE complex to promote membrane fusion. TORC1 activity ultimately compromises the interaction between Sec3 and a t-SNARE component. Our data indicate that TORC1 negatively regulates cell separation in budding yeast by participating in Cbk1 phosphorylation, which in turn controls the fusion of secretory vesicles transporting hydrolase at the site of division.


Asunto(s)
Saccharomycetales , Fosforilación , Anafase , Separación Celular , Diana Mecanicista del Complejo 1 de la Rapamicina
2.
J Cell Biol ; 218(1): 150-170, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30455324

RESUMEN

Eukaryotic cell division requires dependency relationships in which late processes commence only after early ones are appropriately completed. We have discovered a system that blocks late events of cytokinesis until early ones are successfully accomplished. In budding yeast, cytokinetic actomyosin ring contraction and membrane ingression are coupled with deposition of an extracellular septum that is selectively degraded in its primary septum immediately after its completion by secreted enzymes. We find this secretion event is linked to septum completion and forestalled when the process is slowed. Delay of septum degradation requires Fir1, an intrinsically disordered protein localized to the cytokinesis site that is degraded upon septum completion but stabilized when septation is aberrant. Fir1 protects cytokinesis in part by inhibiting a separation-specific exocytosis function of the NDR/LATS kinase Cbk1, a key component of "hippo" signaling that induces mother-daughter separation. We term this system enforcement of cytokinesis order, a checkpoint ensuring proper temporal sequence of mechanistically incompatible processes of cytokinesis.


Asunto(s)
Citocinesis/genética , Regulación Fúngica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Actomiosina/genética , Actomiosina/metabolismo , División Celular/efectos de los fármacos , División Celular/genética , Citocinesis/efectos de los fármacos , Exocitosis/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad Proteica/efectos de los fármacos , Proteolisis , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Factores de Escisión y Poliadenilación de ARNm/metabolismo
3.
Genetics ; 175(1): 65-76, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17057230

RESUMEN

Sphingolipid signaling plays an important role in the regulation of central cellular processes, including cell growth, survival, and differentiation. Many of the essential pathways responsible for sphingolipid biogenesis, and key cellular responses to changes in sphingolipid balance, are conserved between mammalian and yeast cells. Here we demonstrate a novel function for the survival factor Svf1p in the yeast sphingolipid pathway and provide evidence that Svf1p regulates the generation of a specific subset of phytosphingosine. Genetic analyses suggest that Svf1p acts in concert with Lcb4p and Lcb3p to generate a localized pool of phytosphingosine distinct from phytosphingosine generated by Sur2p. This subset is implicated in cellular responses to stress, as loss of SVF1 is associated with defects in the diauxic shift and the oxidative stress response. A genetic interaction between SVF1 and SUR2 demonstrates that both factors are required for optimal growth and survival, and phenotypic similarities between svf1delta sur2delta and ypk1delta suggest that pathways controlled by Svf1p and Sur2p converge on a signaling cascade regulated by Ypk1p. Loss of YPK1 together with disruption of either SVF1 or SUR2 is lethal. Together, these data suggest that compartmentalized generation of distinct intracellular subsets of sphingoid bases may be critical for activation of signaling pathways that control cell growth and survival.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingosina/metabolismo , Supervivencia Celular , Regulación Fúngica de la Expresión Génica , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
4.
Yeast ; 22(8): 641-52, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16034825

RESUMEN

Aberrant regulation of apoptosis, or programmed cell death, contributes to the aetiology of several diseases, including cancers, immunodeficiencies and neurodegenerative illnesses. We hypothesized that key features of mammalian cell death regulation may be conserved in single celled organisms such as the budding yeast Saccharomyces cerevisiae. We previously identified the yeast gene SVF1 in a screen for mutations that could be functionally complemented by exogenous expression of the human anti-apoptotic gene Bcl-x(L). Anti-apoptotic Bcl-2 family members have been shown to promote redox stability through upregulation of antioxidant pathways in mammalian cells. Here we demonstrate that the Svf1 protein is required for yeast survival under conditions of oxidative stress, including cold stress. Cells lacking SVF1 are hypersensitive to conditions associated with increased reactive oxygen species (ROS) generation and to direct chemical precursors of ROS, and demonstrate increased levels of ROS under these conditions. Hypersensitivity to oxidative stress can be reversed by treatment with the antioxidant N-acetylcysteine or expression of exogenous SVF1, although exogenous expression of Bcl-x(L) did not protect cells from cold stress. Exogenous SVF1 expression in mammalian cells confers resistance to H(2)O(2) exposure. Our data are consistent with previous observations suggesting a key role of oxidative stress response in mammalian apoptotic regulation and validate the use of S. cerevisiae as a model for studying programmed cell death.


Asunto(s)
Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Animales , Apoptosis , Línea Celular , Frío , Respuesta al Choque Térmico , Humanos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
5.
Nature ; 417(6892): 971-4, 2002 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-12087407

RESUMEN

Many proteobacteria are able to monitor their population densities through the release of pheromones known as N-acylhomoserine lactones. At high population densities, these pheromones elicit diverse responses that include bioluminescence, biofilm formation, production of antimicrobials, DNA exchange, pathogenesis and symbiosis. Many of these regulatory systems require a pheromone-dependent transcription factor similar to the LuxR protein of Vibrio fischeri. Here we present the structure of a LuxR-type protein. TraR of Agrobacterium tumefaciens was solved at 1.66 A as a complex with the pheromone N-3-oxooctanoyl-L-homoserine lactone (OOHL) and its TraR DNA-binding site. The amino-terminal domain of TraR is an alpha/beta/alpha sandwich that binds OOHL, whereas the carboxy-terminal domain contains a helix turn helix DNA-binding motif. The TraR dimer displays a two-fold symmetry axis in each domain; however, these two axes of symmetry are at an approximately 90 degree angle, resulting in a pronounced overall asymmetry of the complex. The pheromone lies fully embedded within the protein with virtually no solvent contact, and makes numerous hydrophobic contacts with the protein as well as four hydrogen bonds: three direct and one water-mediated.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Homoserina/análogos & derivados , Feromonas/metabolismo , Rhizobium/química , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , ADN Bacteriano/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Dimerización , Secuencias Hélice-Giro-Hélice , Homoserina/metabolismo , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
6.
J Biol Chem ; 277(47): 44870-6, 2002 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-12244097

RESUMEN

All eukaryotic organisms have mechanisms to adapt to changing metabolic conditions. The mammalian cell survival gene Bcl-x(L) enables cells to adapt to changes in cellular metabolism. To identify genes whose function can be substituted by Bcl-x(L) in a unicellular eukaryote, a genetic screen was performed using the yeast Saccharomyces cerevisiae. S. cerevisiae grows by anaerobic glycolysis when glucose is available, switching to oxidative phosphorylation when carbohydrate in the media becomes limiting (diauxic shift). Given that Bcl-x(L) appears to facilitate the switch from glycolytic to oxidative metabolism in mammalian cells, a library of yeast mutants was tested for the ability to efficiently undergo diauxic shift in the presence and absence of Bcl-x(L). Several mutants were identified that have a defect in growth when switched from a fermentable to a nonfermentable carbon source that is corrected by the expression of Bcl-x(L). These genes include the mitochondrial chaperonin TCM62, as well as previously uncharacterized genes. One of these uncharacterized genes, SVF1, promotes cell survival in mammalian cells in response to multiple apoptotic stimuli. The finding that TCM62 and the analogous human prohibitin gene also inhibit mammalian cell death following growth factor withdrawal implicates mitochondrial chaperones as regulators of apoptosis. Further characterization of the genes identified in this screen may enhance our understanding of Bcl-x(L) function in mammalian cells, and of cell survival pathways in general.


Asunto(s)
Genes Fúngicos , Glucólisis/fisiología , Fosforilación Oxidativa , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Represoras , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Animales , Apoptosis/fisiología , Carbono/metabolismo , Línea Celular , Fermentación/fisiología , Humanos , Interleucina-3/metabolismo , Ratones , Mitocondrias/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Prohibitinas , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Proteína bcl-X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA