Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 607(7919): 499-506, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35859199

RESUMEN

Transition metal hydrides (M-H) are ubiquitous intermediates in a wide range of enzymatic processes and catalytic reactions, playing a central role in H+/H2 interconversion1, the reduction of CO2 to formic acid (HCOOH)2 and in hydrogenation reactions. The facile formation of M-H is a critical challenge to address to further improve the energy efficiency of these reactions. Specifically, the easy electrochemical generation of M-H using mild proton sources is key to enable high selectivity versus competitive CO and H2 formation in the CO2 electroreduction to HCOOH, the highest value-added CO2 reduction product3. Here we introduce a strategy for electrocatalytic M-H generation using concerted proton-electron transfer (CPET) mediators. As a proof of principle, the combination of a series of CPET mediators with the CO2 electroreduction catalyst [MnI(bpy)(CO)3Br] (bpy = 2,2'-bipyridine) was investigated, probing the reversal of the product selectivity from CO to HCOOH to evaluate the efficiency of the manganese hydride (Mn-H) generation step. We demonstrate the formation of the Mn-H species by in situ spectroscopic techniques and determine the thermodynamic boundary conditions for this mechanism to occur. A synthetic iron-sulfur cluster is identified as the best CPET mediator for the system, enabling the preparation of a benchmark catalytic system for HCOOH generation.


Asunto(s)
Catálisis , Complejos de Coordinación , Electroquímica , Transporte de Electrón , Protones , Dióxido de Carbono/química , Monóxido de Carbono/química , Complejos de Coordinación/química , Electrones , Formiatos/química , Hierro/química , Oxidación-Reducción , Azufre/química , Termodinámica
2.
J Am Chem Soc ; 146(15): 10806-10811, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38572914

RESUMEN

The development of efficient catalysts for the hydrogenation of CO2 to methanol using "green" H2 is foreseen to be a key step to close the carbon cycle. In this study, we show that small and narrowly distributed alloyed PtGa nanoparticles supported on silica, prepared via a surface organometallic chemistry (SOMC) approach, display notable activity for the hydrogenation of CO2 to methanol, reaching a 7.2 molCH3OH h-1 molPt-1 methanol formation rate with a 54% intrinsic CH3OH selectivity. This reactivity sharply contrasts with what is expected for Pt, which favors the reverse water gas shift reaction, albeit with poor activity (2.6 molCO2 h-1 molPt-1). In situ XAS studies indicate that ca. 50% of Ga is reduced to Ga0 yielding alloyed PtGa nanoparticles, while the remaining 50% persist as isolated GaIII sites. The PtGa catalyst slightly dealloys under CO2 hydrogenation conditions and displays redox dynamics with PtGa-GaOx interfaces responsible for promoting both the CO2 hydrogenation activity and methanol selectivity. Further tailoring the catalyst interface by using a carbon support in place of silica enables to improve the methanol formation rate by a factor of ∼5.

3.
Small ; 18(14): e2107357, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35182015

RESUMEN

Lithium-ion batteries based on single-crystal LiNi1- x - y Cox Mny O2 (NCM, 1-x-y ≥ 0.6) cathode materials are gaining increasing attention due to their improved structural stability resulting in superior cycle life compared to batteries based on polycrystalline NCM. However, an in-depth understanding of the less pronounced degradation mechanism of single-crystal NCM is still lacking. Here, a detailed postmortem study is presented, comparing pouch cells with single-crystal versus polycrystalline LiNi0.60 Co0.20 Mn0.20 O2 (NCM622) cathodes after 1375 dis-/charge cycles against graphite anodes. The thickness of the cation-disordered layer forming in the near-surface region of the cathode particles does not differ significantly between single-crystal and polycrystalline particles, while cracking is pronounced for polycrystalline particles, but practically absent for single-crystal particles. Transition metal dissolution as quantified by time-of-flight mass spectrometry on the surface of the cycled graphite anode is much reduced for single-crystal NCM622. Similarly, CO2 gas evolution during the first two cycles as quantified by electrochemical mass spectrometry is much reduced for single-crystal NCM622. Benefitting from these advantages, graphite/single-crystal NMC622 pouch cells are demonstrated with a cathode areal capacity of 6 mAh cm-2 with an excellent capacity retention of 83% after 3000 cycles to 4.2 V, emphasizing the potential of single-crystalline NCM622 as cathode material for next-generation lithium-ion batteries.

4.
Chem Sci ; 14(44): 12739-12746, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38020386

RESUMEN

Propane Dehydrogenation is a key technology, where Pt-based catalysts have widely been investigated in industry and academia, with development exploring the use of promoters (Sn, Zn, Ga, etc.) and additives (Na, K, Ca, Si, etc.) towards improved catalytic performances. Recent studies have focused on the role of Ga promotion: while computations suggest that Ga plays a key role in enhancing catalytic selectivity and stability of PtGa catalysts through Pt-site isolation as well as morphological changes, experimental evidence are lacking because of the use of oxide supports that prevent more detailed investigation. Here, we develop a methodology to generate Pt and PtGa nanoparticles with tailored interfaces on carbon supports by combining surface organometallic chemistry (SOMC) and specific thermolytic molecular precursors containing or not siloxide ligands. This approach enables the preparation of supported nanoparticles, exhibiting or not an oxide interface, suitable for state-of-the art electron microscopy and XANES characterization. We show that the introduction of Ga enables the formation of homogenously alloyed, amorphous PtGa nanoparticles, in sharp contrast to highly crystalline monometallic Pt nanoparticles. Furthermore, the presence of an oxide interface is shown to stabilize the formation of small particles, at the expense of propene selectivity loss (formation of cracking side-products, methane/ethene), explaining the use of additives such as Na, K and Ca in industrial catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA