Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 292(39): 16174-16187, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28808054

RESUMEN

Digestion in the stomach depends on acidification of the lumen. Histamine-elicited acid secretion is triggered by activation of the PKA cascade, which ultimately results in the insertion of gastric H,K-ATPases into the apical plasma membranes of parietal cells. Our recent study revealed the functional role of PKA-MST4-ezrin signaling axis in histamine-elicited acid secretion. However, it remains uncharacterized how the PKA-MST4-ezrin signaling axis operates the insertion of H,K-ATPases into the apical plasma membranes of gastric parietal cells. Here we show that MST4 phosphorylates ACAP4, an ARF6 GTPase-activating protein, at Thr545 Histamine stimulation activates MST4 and promotes MST4 interaction with ACAP4. ACAP4 physically interacts with MST4 and is a cognate substrate of MST4 during parietal cell activation. The phosphorylation site of ACAP4 by MST4 was mapped to Thr545 by mass spectrometric analyses. Importantly, phosphorylation of Thr545 is essential for acid secretion in parietal cells because either suppression of ACAP4 or overexpression of non-phosphorylatable ACAP4 prevents the apical membrane reorganization and proton pump translocation elicited by histamine stimulation. In addition, persistent overexpression of MST4 phosphorylation-deficient ACAP4 results in inhibition of gastric acid secretion and blockage of tubulovesicle fusion to the apical membranes. Significantly, phosphorylation of Thr545 enables ACAP4 to interact with ezrin. Given the location of Thr545 between the GTPase-activating protein domain and the first ankyrin repeat, we reason that MST4 phosphorylation elicits a conformational change that enables ezrin-ACAP4 interaction. Taken together, these results define a novel molecular mechanism linking the PKA-MST4-ACAP4 signaling cascade to polarized acid secretion in gastric parietal cells.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Modelos Biológicos , Células Parietales Gástricas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Sustitución de Aminoácidos , Animales , Membrana Celular/enzimología , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Polaridad Celular , Células Cultivadas , Biología Computacional , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Bases de Datos de Proteínas , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/genética , Microscopía Electrónica de Transmisión , Mutación , Células Parietales Gástricas/citología , Células Parietales Gástricas/ultraestructura , Fosforilación , Conformación Proteica , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Conejos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
2.
J Biol Chem ; 290(45): 27053-27066, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26378239

RESUMEN

Mitotic chromosome segregation is orchestrated by the dynamic interaction of spindle microtubules with the kinetochores. During chromosome alignment, kinetochore-bound microtubules undergo dynamic cycles between growth and shrinkage, leading to an oscillatory movement of chromosomes along the spindle axis. Although kinetochore protein CENP-H serves as a molecular control of kinetochore-microtubule dynamics, the mechanistic link between CENP-H and kinetochore microtubules (kMT) has remained less characterized. Here, we show that CSPP1 is a kinetochore protein essential for accurate chromosome movements in mitosis. CSPP1 binds to CENP-H in vitro and in vivo. Suppression of CSPP1 perturbs proper mitotic progression and compromises the satisfaction of spindle assembly checkpoint. In addition, chromosome oscillation is greatly attenuated in CSPP1-depleted cells, similar to what was observed in the CENP-H-depleted cells. Importantly, CSPP1 depletion enhances velocity of kinetochore movement, and overexpression of CSPP1 decreases the speed, suggesting that CSPP1 promotes kMT stability during cell division. Specific perturbation of CENP-H/CSPP1 interaction using a membrane-permeable competing peptide resulted in a transient mitotic arrest and chromosome segregation defect. Based on these findings, we propose that CSPP1 cooperates with CENP-H on kinetochores to serve as a novel regulator of kMT dynamics for accurate chromosome segregation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis/fisiología , Aurora Quinasa B/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/genética , Células HeLa , Humanos , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Mitosis/genética , Unión Proteica , ARN Interferente Pequeño/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA