Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Mol Ecol ; 33(19): e17520, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39205506

RESUMEN

Animal gut microbiomes are critical to host physiology and fitness. The gut microbiomes of fishes-the most abundant and diverse vertebrate clade-have received little attention relative to other clades. Coral reef fishes, in particular, make up a wide range of evolutionary histories and feeding ecologies that are likely associated with gut microbiome diversity. The repeated evolution of herbivory in fishes and mammals also allows us to examine microbiome similarity in relationship to diet across the entire vertebrate tree of life. Here, we generate a large coral reef fish gut microbiome dataset (n = 499 samples, 19 species) and combine it with a diverse aggregation of public microbiome data (n = 447) to show that host diet drives significant convergence between coral reef fish and mammalian gut microbiomes. We demonstrate that this similarity is largely driven by carnivory and herbivory and that herbivorous and carnivorous hosts exhibit distinct microbial compositions across fish and mammals. We also show that fish and mammal gut microbiomes share prominent microbial taxa, including Ruminoccocus spp. and Akkermansia spp., and predicted metabolic pathways. Despite the major evolutionary and ecological differences between fishes and mammals, our results reveal that their gut microbiomes undergo similar dietary selective pressures. Thus, diet, in addition to phylosymbiosis must be considered even when comparing the gut microbiomes of distantly related hosts.


Asunto(s)
Arrecifes de Coral , Dieta , Peces , Microbioma Gastrointestinal , Herbivoria , Mamíferos , Animales , Peces/microbiología , Microbioma Gastrointestinal/genética , Mamíferos/microbiología , Carnivoría , Filogenia
2.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34544855

RESUMEN

Ecological interactions uphold ecosystem structure and functioning. However, as species richness increases, the number of possible interactions rises exponentially. More than 6,000 species of coral reef fishes exist across the world's tropical oceans, resulting in an almost innumerable array of possible trophic interactions. Distilling general patterns in these interactions across different bioregions stands to improve our understanding of the processes that govern coral reef functioning. Here, we show that across bioregions, tropical coral reef food webs exhibit a remarkable congruence in their trophic interactions. Specifically, by compiling and investigating the structure of six coral reef food webs across distinct bioregions, we show that when accounting for consumer size and resource availability, these food webs share more trophic interactions than expected by chance. In addition, coral reef food webs are dominated by dietary specialists, which makes trophic pathways vulnerable to biodiversity loss. Prey partitioning among these specialists is geographically consistent, and this pattern intensifies when weak interactions are disregarded. Our results suggest that energy flows through coral reef communities along broadly comparable trophic pathways. Yet, these critical pathways are maintained by species with narrow, specialized diets, which threatens the existence of coral reef functioning in the face of biodiversity loss.


Asunto(s)
Biodiversidad , Arrecifes de Coral , Dieta , Ecosistema , Peces/fisiología , Cadena Alimentaria , Conducta Predatoria/fisiología , Animales , Biomasa , Peces/clasificación
3.
PLoS Biol ; 18(12): e3000702, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370276

RESUMEN

Understanding species' roles in food webs requires an accurate assessment of their trophic niche. However, it is challenging to delineate potential trophic interactions across an ecosystem, and a paucity of empirical information often leads to inconsistent definitions of trophic guilds based on expert opinion, especially when applied to hyperdiverse ecosystems. Using coral reef fishes as a model group, we show that experts disagree on the assignment of broad trophic guilds for more than 20% of species, which hampers comparability across studies. Here, we propose a quantitative, unbiased, and reproducible approach to define trophic guilds and apply recent advances in machine learning to predict probabilities of pairwise trophic interactions with high accuracy. We synthesize data from community-wide gut content analyses of tropical coral reef fishes worldwide, resulting in diet information from 13,961 individuals belonging to 615 reef fish. We then use network analysis to identify 8 trophic guilds and Bayesian phylogenetic modeling to show that trophic guilds can be predicted based on phylogeny and maximum body size. Finally, we use machine learning to test whether pairwise trophic interactions can be predicted with accuracy. Our models achieved a misclassification error of less than 5%, indicating that our approach results in a quantitative and reproducible trophic categorization scheme, as well as high-resolution probabilities of trophic interactions. By applying our framework to the most diverse vertebrate consumer group, we show that it can be applied to other organismal groups to advance reproducibility in trait-based ecology. Our work thus provides a viable approach to account for the complexity of predator-prey interactions in highly diverse ecosystems.


Asunto(s)
Peces/microbiología , Cadena Alimentaria , Microbioma Gastrointestinal/fisiología , Animales , Teorema de Bayes , Tamaño Corporal , Arrecifes de Coral , Dieta , Ecología , Ecosistema , Peces/metabolismo , Modelos Teóricos , Filogenia , Reproducibilidad de los Resultados
4.
Proc Biol Sci ; 289(1982): 20221466, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36100017

RESUMEN

In oviparous species, the timing of hatching is a crucial decision, but for developing embryos, assessing cues that indicate the optimal time to hatch is challenging. In species with pre-hatching parental care, parents can assess environmental conditions and induce their offspring to hatch. We provide the first documentation of parental hatching regulation in a coral reef fish, demonstrating that male neon gobies (Elacatinus colini) directly regulate hatching by removing embryos from the clutch and spitting hatchlings into the water column. All male gobies synchronized hatching within 2 h of sunrise, regardless of when eggs were laid. Paternally incubated embryos hatched later in development, more synchronously, and had higher hatching success than artificially incubated embryos that were shaken to provide a vibrational stimulus or not stimulated. Artificially incubated embryos displayed substantial plasticity in hatching times (range: 80-224 h post-fertilization), suggesting that males could respond to environmental heterogeneity by modifying the hatching time of their offspring. Finally, paternally incubated embryos hatched with smaller yolk sacs and larger propulsive areas than artificially incubated embryos, suggesting that paternal effects on hatchling phenotypes may influence larval dispersal and fitness. These findings highlight the complexity of fish parental care behaviour and may have important, and currently unstudied, consequences for fish population dynamics.


Asunto(s)
Arrecifes de Coral , Peces , Animales , Familia , Masculino
5.
Glob Chang Biol ; 27(11): 2623-2632, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33749949

RESUMEN

Sea-level rise is predicted to cause major damage to tropical coastlines. While coral reefs can act as natural barriers for ocean waves, their protection hinges on the ability of scleractinian corals to produce enough calcium carbonate (CaCO3 ) to keep up with rising sea levels. As a consequence of intensifying disturbances, coral communities are changing rapidly, potentially reducing community-level CaCO3 production. By combining colony-level physiology and long-term monitoring data, we show that reefs recovering from major disturbances can produce 40% more CaCO3 than currently estimated due to the disproportionate contribution of juvenile corals. However, the buffering effect of highly productive juvenile corals is compromised by recruitment failures, which have been more frequently observed after large-scale, repeated bleaching events. While the size structure of corals can bolster a critical ecological function on reefs, climate change impacts on recruitment may undermine this buffering effect, thus further compromising the persistence of reefs and their provision of important ecosystem services.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Carbonatos , Cambio Climático , Ecosistema
6.
J Anim Ecol ; 90(12): 2834-2847, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34478567

RESUMEN

An animal's functional niche is a complex, multidimensional construct, mediated by an individual's morphology, physiology and behaviour. Behavioural aspects of the niche can be difficult to quantify, as their expression is often subtle and tailored to an infinite number of different situations that involve sophisticated mechanisms such as mutualisms, species dominance or fear effects. The extreme diversity of tropical fish assemblages has led to extensive debate over the extent to which species differ in their resource use and functional role. Ectoparasite removal by cleanerfish species is considered a behaviourally complex interspecific interaction in vertebrates, but differences in the services rendered by various species of cleanerfish, and potential consequences for the range of clients (i.e. resources) they attract, have rarely been examined. Here, we quantify differences among three coexisting species of morphologically similar cleaner wrasses (Labroides bicolor, L. dimidiatus and L. pectoralis) in the global centre of marine biodiversity, the Coral Triangle. We found no clear taxonomic partitioning of clients among cleanerfishes. However, the three cleanerfish species exhibited distinct habitat preferences, and differed in their cleaning intensity: L. bicolor serviced the fewest species and clients, while L. pectoralis serviced the most clients and spent the most time cleaning. Accordingly, L. pectoralis showed no preference for clients based on client size or abundance, while both L. bicolor and L. dimidiatus had a higher likelihood of interacting with clients based on their size (larger client species in L. bicolor, smaller client species in L. dimidiatus) and abundance (more abundant client species for both). Our results suggest that the services rendered by the three species of cleanerfishes differ in their spatial availability, quality and selectivity, thus permitting the coexistence of these species despite their ecological similarity. This, in turn, creates a complex seascape of species-specific cleaning services that underpins crucial biotic interactions in the ocean's most diverse ecosystem.


Asunto(s)
Ecosistema , Perciformes , Animales , Arrecifes de Coral , Peces , Simbiosis
7.
Ecology ; 99(3): 642-651, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29282714

RESUMEN

Ectotherms exhibit considerable plasticity in their life-history traits. This plasticity can reflect variability in environmental and social factors, but the causes of observed patterns are often obscured with increasing spatial scales. We surveyed dichromatic parrotfishes across the northern Great Barrier Reef to examine variation in body size distributions and concomitant size at sex change (L∆50 ) against hypotheses of directional influence from biotic and abiotic factors known to affect demography. By integrating top-down, horizontal, and bottom-up processes, we demonstrate a strong association between exposure regimes (which are known to influence nutritional ecology and mating systems) and both body size distribution and L∆50 (median length at female-to-male sex change), with an accompanying lack of strong empirical support for other biotic drivers previously hypothesized to affect body size distributions. Across sites, body size was predictably linked to variation in temperature and productivity, but the strongest predictor was whether subpopulations occurred at sheltered mid and inner shelf reefs or at wave-exposed outer shelf reef systems. Upon accounting for the underlying influence of body size distribution, this habitat-exposure gradient was highly associated with further L∆50 variation across species, demonstrating that differences in mating systems across exposure gradients affect the timing of sex change beyond variation concomitant with differing overall body sizes. We posit that exposure-driven differences in habitat disturbance regimes have marked effects on the nutritional ecology of parrotfishes, leading to size-related variation in mating systems, which underpin the observed patterns. Our results call for better integration of life-history, social factors, and ecosystem processes to foster an improved understanding of complex ecosystems such as coral reefs.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Demografía , Ecosistema , Femenino , Peces , Masculino
8.
Oecologia ; 183(1): 161-175, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27744581

RESUMEN

Removal of predators is often hypothesized to alter community structure through trophic cascades. However, despite recent advances in our understanding of trophic cascades, evidence is often circumstantial on coral reefs because fishing pressure frequently co-varies with other anthropogenic effects, such as fishing for herbivorous fishes and changes in water quality due to pollution. Australia's outer Great Barrier Reef (GBR) has experienced fishing-induced declines of apex predators and mesopredators, but pollution and targeting of herbivorous fishes are minimal. Here, we quantify fish and benthic assemblages across a fishing-induced predator density gradient on the outer GBR, including apex predators and mesopredators to herbivores and benthic assemblages, to test for evidence of trophic cascades and alternative hypotheses to trophic cascade theory. Using structural equation models, we found no cascading effects from apex predators to lower trophic levels: a loss of apex predators did not lead to higher levels of mesopredators, and this did not suppress mobile herbivores and drive algal proliferation. Likewise, we found no effects of mesopredators on lower trophic levels: a decline of mesopredators was not associated with higher abundances of algae-farming damselfishes and algae-dominated reefs. These findings indicate that top-down forces on coral reefs are weak, at least on the outer GBR. We conclude that predator-mediated trophic cascades are probably the exception rather than the rule in complex ecosystems such as the outer GBR.


Asunto(s)
Arrecifes de Coral , Peces , Animales , Ecosistema , Herbivoria , Estado Nutricional
9.
Oecologia ; 182(1): 203-17, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27147547

RESUMEN

Consumer-producer dynamics are critical for ecosystem functioning. In marine environments, primary production is often subject to strong consumer control, and on coral reefs, the grazing pressure exerted by herbivorous fishes has been identified as a major determinant of benthic community structure. Using experimental surfaces, we demonstrate that on coral reefs, microtopographic refuges decrease the overall grazing pressure by more than one order of magnitude. Furthermore, by functionally characterizing consumer communities, we show that refuges also restrict grazer communities to only one functional group, algal croppers, which selectively remove the apical parts of algae. In contrast, detritivorous fishes, which intensively graze flat and exposed microhabitats and can remove both particulate matter and entire stands of algal filaments, are almost entirely excluded. This preclusion of an entire ecosystem process (the removal of particulates) results in two distinct coexisting benthic regimes: communities within refuges are diverse and characterized by numerous algal types and juvenile scleractinian corals, while communities outside refuges support only low-diversity assemblages dominated by simple, unbranched filamentous turf algal mats. Although limited to the scale of a few centimeters, microtopographic refuges can, therefore, mediate the biotic control of community development by affecting both overall grazing rates and the functional diversity of consumer communities. We suggest that the coexistence of two distinct benthic regimes at a small spatial scale may be an important factor for ecosystem functioning and highlight the need to consider the ecological complexity of consumer-producer dynamics when assessing the status of coral reef ecosystems.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Ecosistema , Peces , Herbivoria
10.
Proc Biol Sci ; 282(1815)2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26354935

RESUMEN

Patterns of ecological specialization offer invaluable information about ecosystems. Yet, specialization is rarely quantified across several ecological niche axes and variables beyond the link between morphological and dietary specialization have received little attention. Here, we provide a quantitative evaluation of ecological specialization in a coral reef fish assemblage (f. Acanthuridae) along one fundamental and two realized niche axes. Specifically, we examined ecological specialization in 10 surgeonfish species with regards to morphology and two realized niche axes associated with diet and foraging microhabitat utilization using a recently developed multidimensional framework. We then investigated the potential relationships between morphological and behavioural specialization. These relationships differed markedly from the traditional ecomorphological paradigm. While morphological specialization showed no relationship with dietary specialization, it exhibited a strong relationship with foraging microhabitat specialization. However, this relationship was inverted: species with specialized morphologies were microhabitat generalists, whereas generalized morphotypes were microhabitat specialists. Interestingly, this mirrors relationships found in plant-pollinator communities and may also be applicable to other ecosystems, highlighting the potential importance of including niche axes beyond dietary specialization into ecomorphological frameworks. On coral reefs, it appears that morphotypes commonly perceived as most generalized may, in fact, be specialized in exploiting flat and easily accessible microhabitats.


Asunto(s)
Conducta Apetitiva , Arrecifes de Coral , Ecosistema , Perciformes/anatomía & histología , Perciformes/fisiología , Animales , Dieta , Perciformes/clasificación , Filogenia , Especificidad de la Especie
11.
J Anim Ecol ; 83(3): 661-70, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24164060

RESUMEN

Detailed knowledge of a species' functional niche is crucial for the study of ecological communities and processes. The extent of niche overlap, functional redundancy and functional complementarity is of particular importance if we are to understand ecosystem processes and their vulnerability to disturbances. Coral reefs are among the most threatened marine systems, and anthropogenic activity is changing the functional composition of reefs. The loss of herbivorous fishes is particularly concerning as the removal of algae is crucial for the growth and survival of corals. Yet, the foraging patterns of the various herbivorous fish species are poorly understood. Using a multidimensional framework, we present novel individual-based analyses of species' realized functional niches, which we apply to a herbivorous coral reef fish community. In calculating niche volumes for 21 species, based on their microhabitat utilization patterns during foraging, and computing functional overlaps, we provide a measurement of functional redundancy or complementarity. Complementarity is the inverse of redundancy and is defined as less than 50% overlap in niche volumes. The analyses reveal extensive complementarity with an average functional overlap of just 15.2%. Furthermore, the analyses divide herbivorous reef fishes into two broad groups. The first group (predominantly surgeonfishes and parrotfishes) comprises species feeding on exposed surfaces and predominantly open reef matrix or sandy substrata, resulting in small niche volumes and extensive complementarity. In contrast, the second group consists of species (predominantly rabbitfishes) that feed over a wider range of microhabitats, penetrating the reef matrix to exploit concealed surfaces of various substratum types. These species show high variation among individuals, leading to large niche volumes, more overlap and less complementarity. These results may have crucial consequences for our understanding of herbivorous processes on coral reefs, as algal removal appears to depend strongly on species-specific microhabitat utilization patterns of herbivores. Furthermore, the results emphasize the capacity of the individual-based analyses to reveal variation in the functional niches of species, even in high-diversity systems such as coral reefs, demonstrating its potential applicability to other high-diversity ecosystems.


Asunto(s)
Biodiversidad , Arrecifes de Coral , Ecología/métodos , Peces/fisiología , Modelos Biológicos , Animales , Conservación de los Recursos Naturales , Ecosistema , Herbivoria , Queensland , Sensibilidad y Especificidad
12.
Sci Rep ; 14(1): 19489, 2024 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174608

RESUMEN

While recent technical breakthroughs have enabled advances in the description of reefs down to 150 m, the structure and depth zonation of deep-reef communities below 150 m remains largely unknown. Here, we present results from over 10 years of deep-reef fish surveys using human-occupied submersibles at four locations across the Caribbean Sea, constituting one of the only continuous reef-fish surveys from 10 to 480 m (1 site) and 40 to 300 m (3 sites). We identify four vertically stratified deep-reef fish communities between 40 and 300 m bordered by an altiphotic (0-10 m) and a deep-sea (300-480 m) community. We found a strong faunal break around 150 m that separates mesophotic and rariphotic zones and secondary breaks at ~ 70 to 90 m and ~ 180 to 200 m subdividing these zones into upper and lower communities. From 300 to 480 m in Roatán, we found a single fish community dominated by deep-sea families, indicating that the lower boundary of the reef-fish realm occurs at 300 m. No differences were found between communities ranging from 20 to 60 m, suggesting that fishes from the lower altiphotic and upper mesophotic form an ecological continuum. While some variability was observed across sites, the overall depth zonation and key species characterizing depth zones were consistent. Most deep-reef species observed were depth specialists restricted to a single depth zone, but many shallow-reef species extended down to mesophotic depths. Depth segregation among species of a genus was found across ten reef-fish genera and likely constitutes one of the mechanisms driving community distinctiveness and thereby fish diversity across depths.


Asunto(s)
Arrecifes de Coral , Peces , Animales , Región del Caribe , Peces/clasificación , Peces/anatomía & histología , Biodiversidad , Ecosistema
13.
Trends Ecol Evol ; 39(5): 467-478, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105132

RESUMEN

The movement of energy and nutrients through ecological communities represents the biological 'pulse' underpinning ecosystem functioning and services. However, energy and nutrient fluxes are inherently difficult to observe, particularly in high-diversity systems such as coral reefs. We review advances in the quantification of fluxes in coral reef fishes, focusing on four key frameworks: demographic modelling, bioenergetics, micronutrients, and compound-specific stable isotope analysis (CSIA). Each framework can be integrated with underwater surveys, enabling researchers to scale organismal processes to ecosystem properties. This has revealed how small fish support biomass turnover, pelagic subsidies sustain fisheries, and fisheries benefit human health. Combining frameworks, closing data gaps, and expansion to other aquatic ecosystems can advance understanding of how fishes contribute to ecosystem functions and services.


Asunto(s)
Arrecifes de Coral , Peces , Cadena Alimentaria , Nutrientes , Animales , Peces/fisiología , Nutrientes/metabolismo , Metabolismo Energético
14.
Biol Rev Camb Philos Soc ; 98(1): 1-18, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36054431

RESUMEN

All animals on Earth compete for free energy, which is acquired, assimilated, and ultimately allocated to growth and reproduction. Competition is strongest within communities of sympatric, ecologically similar animals of roughly equal size (i.e. horizontal communities), which are often the focus of traditional community ecology. The replacement of taxonomic identities with functional traits has improved our ability to decipher the ecological dynamics that govern the assembly and functioning of animal communities. Yet, the use of low-resolution and taxonomically idiosyncratic traits in animals may have hampered progress to date. An animal's metabolic rate (MR) determines the costs of basic organismal processes and activities, thus linking major aspects of the multifaceted constructs of ecological niches (where, when, and how energy is obtained) and ecological fitness (how much energy is accumulated and passed on to future generations). We review evidence from organismal physiology to large-scale analyses across the tree of life to propose that MR gives rise to a group of meaningful functional traits - resting metabolic rate (RMR), maximum metabolic rate (MMR), and aerobic scope (AS) - that may permit an improved quantification of the energetic basis of species coexistence and, ultimately, the assembly and functioning of animal communities. Specifically, metabolic traits integrate across a variety of typical trait proxies for energy acquisition and allocation in animals (e.g. body size, diet, mobility, life history, habitat use), to yield a smaller suite of continuous quantities that: (1) can be precisely measured for individuals in a standardized fashion; and (2) apply to all animals regardless of their body plan, habitat, or taxonomic affiliation. While integrating metabolic traits into animal community ecology is neither a panacea to disentangling the nuanced effects of biological differences on animal community structure and functioning, nor without challenges, a small number of studies across different taxa suggest that MR may serve as a useful proxy for the energetic basis of competition in animals. Thus, the application of MR traits for animal communities can lead to a more general understanding of community assembly and functioning, enhance our ability to trace eco-evolutionary dynamics from genotypes to phenotypes (and vice versa), and help predict the responses of animal communities to environmental change. While trait-based ecology has improved our knowledge of animal communities to date, a more explicit energetic lens via the integration of metabolic traits may further strengthen the existing framework.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Ecología , Evolución Biológica , Fenotipo
15.
Ecol Evol ; 13(7): e10302, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37441098

RESUMEN

Gravel beaches in the Mediterranean ecoregion represent an economically important and unique habitat type. Yet, burgeoning tourism, intensive coastal development and artificial nourishment of beaches may jeopardize their ecological communities. To date, species that reside on gravel beaches and the consequences of beach alterations are poorly understood, which hampers the development of a sustainable coastal tourism industry along the region's shorelines. Using a simple collection method based on dredging buckets through the intertidal section of beaches, we quantified the microhabitat association of two sympatric clingfish species in the genus Gouania at seven natural and an artificial gravel beach based on sediment characteristics. We hypothesized that slender (G. pigra) and stout (G. adriatica) morphotypes would partition interstitial niche space based on sediment size, which may affect the vulnerability of the species to changes in gravel beach composition due to coastal development. We detected substantial differences in gravel composition within and among the sampled beaches which suggests scope for microhabitat partitioning in Gouania. Indeed, we found significant relationships between species identity and the presence/absence and abundance of individuals in hauls based on their positioning on PC1. Our results suggest that modifications of gravel beaches through coastal development, including beach nourishment, intensifying coastal erosion, or artificial beach creation, may have detrimental consequences for the two species if sediment types or sizes are altered. We posit that, given the simplicity and efficacy of our sampling method and the sensitivity of Gouania species to prevailing gravel composition, the genus could serve as an important indicator for gravel beach management in the Mediterranean ecoregion.

16.
Ecology ; 104(8): e4119, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37303281

RESUMEN

Consumers mediate nutrient cycling through excretion and egestion across most ecosystems. In nutrient-poor tropical waters such as coral reefs, nutrient cycling is critical for maintaining productivity. While the cycling of fish-derived inorganic nutrients via excretion has been extensively investigated, the role of egestion for nutrient cycling has remained poorly explored. We sampled the fecal contents of 570 individual fishes across 40 species, representing six dominant trophic guilds of coral reef fishes in Moorea, French Polynesia. We measured fecal macro- (proteins, carbohydrates, lipids) and micro- (calcium, copper, iron, magnesium, manganese, zinc) nutrients and compared the fecal nutrient quantity and quality across trophic guilds, taxa, and body size. Macro- and micronutrient concentrations in fish feces varied markedly across species. Genera and trophic guild best predicted fecal nutrient concentrations. In addition, nutrient composition in feces was unique among species within both trophic guilds (herbivores and corallivores) and genera (Acanthurus and Chaetodon). Particularly, certain coral reef fishes (e.g., Thalassoma hardwicke, Chromis xanthura, Chaetodon pelewensis and Acanthurus pyroferus) harbored relatively high concentrations of micronutrients (e.g., Mn, Mg, Zn and Fe, respectively) that are known to contribute to ocean productivity and positively impact coral physiological performances. Given the nutrient-rich profiles across reef fish feces, conserving holistic reef fish communities ensures the availability of nutritional pools on coral reefs. We therefore suggest that better integration of consumer egestion dynamics into food web models and ecosystem-scale processes will facilitate an improved understanding of coral reef functioning.


Asunto(s)
Antozoos , Perciformes , Animales , Arrecifes de Coral , Ecosistema , Peces/fisiología , Nutrientes , Heces
17.
Ecol Evol ; 12(7): e9084, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35813930

RESUMEN

Organismal metabolic rates (MRs) are the basis of energy and nutrient fluxes through ecosystems. In the marine realm, fishes are some of the most prominent consumers. However, their metabolic demand in the wild (field MR [FMR]) is poorly documented, because it is challenging to measure directly. Here, we introduce a novel approach to estimating the component of FMR associated with voluntary activity (i.e., the field active MR [ AM R field ] ). Our approach combines laboratory-based respirometry, swimming speeds, and field-based stereo-video systems to estimate the activity of individuals. We exemplify our approach by focusing on six coral reef fish species, for which we quantified standard MR and maximum MR (SMR and MMR, respectively) in the laboratory, and body sizes and swimming speeds in the field. Based on the relationships between MR, body size, and swimming speeds, we estimate that the activity scope (i.e., the ratio between AM R field and SMR) varies from 1.2 to 3.2 across species and body sizes. Furthermore, we illustrate that the scaling exponent for AM R field varies across species and can substantially exceed the widely assumed value of 0.75 for SMR. Finally, by scaling organismal AM R field estimates to the assemblage level, we show the potential effect of this variability on community metabolic demand. Our approach may improve our ability to estimate elemental fluxes mediated by a critically important group of aquatic animals through a non-destructive, widely applicable technique.

18.
Ecol Evol ; 12(3): e8613, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35342609

RESUMEN

Coral reefs provide a range of important services to humanity, which are underpinned by community-level ecological processes such as coral calcification. Estimating these processes relies on our knowledge of individual physiological rates and species-specific abundances in the field. For colonial animals such as reef-building corals, abundance is frequently expressed as the relative surface cover of coral colonies, a metric that does not account for demographic parameters such as coral size. This may be problematic because many physiological rates are directly related to organism size, and failure to account for linear scaling patterns may skew estimates of ecosystem functioning. In the present study, we characterize the scaling of three physiological rates - calcification, respiration, and photosynthesis - considering the colony size for six prominent, reef-building coral taxa in Mo'orea, French Polynesia. After a seven-day acclimation period in the laboratory, we quantified coral physiological rates for three hours during daylight (i.e., calcification and gross photosynthesis) and one hour during night light conditions (i.e., dark respiration). Our results indicate that area-specific calcification rates are higher for smaller colonies across all taxa. However, photosynthesis and respiration rates remain constant over the colony-size gradient. Furthermore, we revealed a correlation between the demographic dynamics of coral genera and the ratio between net primary production and calcification rates. Therefore, intraspecific scaling of reef-building coral physiology not only improves our understanding of community-level coral reef functioning but it may also explain species-specific responses to disturbances.

19.
Nat Ecol Evol ; 6(6): 701-708, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35379939

RESUMEN

Human impact increasingly alters global ecosystems, often reducing biodiversity and disrupting the provision of essential ecosystem services to humanity. Therefore, preserving ecosystem functioning is a critical challenge of the twenty-first century. Coral reefs are declining worldwide due to the pervasive effects of climate change and intensive fishing, and although research on coral reef ecosystem functioning has gained momentum, most studies rely on simplified proxies, such as fish biomass. This lack of quantitative assessments of multiple process-based ecosystem functions hinders local and regional conservation efforts. Here we combine global coral reef fish community surveys and bioenergetic models to quantify five key ecosystem functions mediated by coral reef fishes. We show that functions exhibit critical trade-offs driven by varying community structures, such that no community can maximize all functions. Furthermore, functions are locally dominated by few species, but the identity of dominant species substantially varies at the global scale. In fact, half of the 1,110 species in our dataset are functionally dominant in at least one location. Our results reinforce the need for a nuanced, locally tailored approach to coral reef conservation that considers multiple ecological functions beyond the effect of standing stock biomass.


Asunto(s)
Arrecifes de Coral , Ecosistema , Animales , Biodiversidad , Biomasa , Cambio Climático
20.
Ecol Evol ; 11(9): 4898-4908, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33976857

RESUMEN

Efforts to understand and protect ecosystem functioning have put considerable emphasis on classifying species according to the functions they perform. However, coarse classifications based on diet or feeding mode often oversimplify species' contributions to ecological processes. Behavioral variation among superficially similar species is easily missed but could indicate important differences in competitive interactions and the spatial scale at which species deliver their functions. To test the extent to which behavior can vary within existing functional classifications, we investigate the diversity of foraging movements in three herbivorous coral reef fishes across two functional groups. We find significant variation in foraging movements and spatial scales of operation between species, both within and across existing functional groups. Specifically, we show that movements and space use range from low frequency foraging bouts separated by short distances and tight turns across a small area, to high frequency, far-ranging forays separated by wide sweeping turns. Overall, we add to the burgeoning evidence that nuanced behavioral differences can underpin considerable complementarity within existing functional classifications, and that species assemblages may be considerably less redundant than previously thought.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA