Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(7): 076003, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37656846

RESUMEN

The ability of magnetic materials to modify superconductors is an active research area for possible applications in thermoelectricity, quantum sensing, and spintronics. We consider the fundamental properties of the Josephson effect in a class of magnetic materials that recently have attracted much attention: altermagnets. We show that despite having no net magnetization and a band structure qualitatively different from ferromagnets and from conventional antiferromagnets without spin-split bands, altermagnets induce 0-π oscillations. The decay length and oscillation period of the Josephson coupling are qualitatively different from ferromagnetic junctions and depend on the crystallographic orientation of the altermagnet. The Josephson effect in altermagnets thus serves a dual purpose: it acts as a signature that distinguishes altermagnetism from ferromagnetism and conventional antiferromagnetism and offers a way to control the supercurrent via flow direction anisotropy.

2.
Phys Rev Lett ; 131(7): 076001, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37656842

RESUMEN

Antiferromagnets have no net spin splitting on the scale of the superconducting coherence length. Despite this, antiferromagnets have been observed to suppress superconductivity in a similar way as ferromagnets, a phenomenon that still lacks a clear understanding. We find that this effect can be explained by the role of impurities in antiferromagnets. Using quasiclassical Green's functions, we study the proximity effect and critical temperature in diffusive superconductor-metallic antiferromagnet bilayers. The nonmagnetic impurities acquire an effective magnetic component in the antiferromagnet. This not only reduces the critical temperature but also separates the superconducting correlations into short-ranged and long-ranged components, similar to ferromagnetic proximity systems.

3.
Nano Lett ; 22(1): 14-21, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34935368

RESUMEN

Topologically nontrivial spin textures, such as skyrmions and dislocations, display emergent electrodynamics and can be moved by spin currents over macroscopic distances. These unique properties and their nanoscale size make them excellent candidates for the development of next-generation race-track memory and unconventional computing. A major challenge for these applications and the investigation of nanoscale magnetic structures in general is the realization of suitable detection schemes. We study magnetic disclinations, dislocations, and domain walls in FeGe and reveal pronounced responses that distinguish them from the helimagnetic background. A combination of magnetic force microscopy (MFM) and micromagnetic simulations links the response to the local magnetic susceptibility, that is, characteristic changes in the spin texture driven by the MFM tip. On the basis of the findings, which we explain using nonlinear response theory, we propose a read-out scheme using superconducting microcoils, presenting an innovative approach for detecting topological spin textures and domain walls in device-relevant geometries.

4.
Phys Rev Lett ; 127(1): 017701, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34270309

RESUMEN

We report generic and tunable crossed Andreev reflection (CAR) in a superconductor sandwiched between two antiferromagnetic layers. We consider recent examples of two-dimensional magnets with hexagonal lattices, where gate voltages control the carrier type and density, and predict a robust signature of perfect CAR in the nonlocal differential conductance with one electron-doped and one hole-doped antiferromagnetic lead. The magnetic field-free and spin-degenerate CAR signal is electrically controlled and visible over a large voltage range, showing promise for solid-state quantum entanglement applications.

5.
Phys Rev Lett ; 127(20): 207001, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34860055

RESUMEN

At the interface between a ferromagnetic insulator and a superconductor there is a coupling between the spins of the two materials. We show that when a supercurrent carried by triplet Cooper pairs flows through the superconductor, the coupling induces a magnon spin current in the adjacent ferromagnetic insulator. The effect is dominated by Cooper pairs polarized in the same direction as the ferromagnetic insulator, so that charge and spin supercurrents produce similar results. Our findings demonstrate a way of converting Cooper pair supercurrents to magnon spin currents.

6.
Nano Lett ; 20(1): 306-313, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31809058

RESUMEN

The compensated magnetic order and characteristic terahertz frequencies of antiferromagnetic materials make them promising candidates to develop a new class of robust, ultrafast spintronic devices. The manipulation of antiferromagnetic spin-waves in thin films is anticipated to lead to new exotic phenomena such as spin-superfluidity, requiring an efficient propagation of spin-waves in thin films. However, the reported decay length in thin films has so far been limited to a few nanometers. In this work, we achieve efficient spin-wave propagation over micrometer distances in thin films of the insulating antiferromagnet hematite with large magnetic domains while evidencing much shorter attenuation lengths in multidomain thin films. Through transport and magnetic imaging, we determine the role of the magnetic domain structure and spin-wave scattering at domain walls to govern the transport. We manipulate the spin transport by tailoring the domain configuration through field cycle training. For the appropriate crystalline orientation, zero-field spin transport is achieved across micrometers, as required for device integration.

7.
Phys Rev Lett ; 125(23): 237204, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33337217

RESUMEN

Motivated by recent progress on synthesizing two-dimensional magnetic van der Waals systems, we propose a setup for detecting the topological Berezinskii-Kosterlitz-Thouless phase transition in spin-transport experiments on such structures. We demonstrate that the spatial correlations of injected spin currents into a pair of metallic leads can be used to measure the predicted universal jump of 2/π in the ferromagnet spin stiffness as well as its predicted universal square root dependence on temperature as the transition is approached from below. Our setup provides a simple route to measuring this topological phase transition in two-dimensional magnetic systems, something which up to now has proven elusive. It is hoped that this will encourage experimental efforts to investigate critical phenomena beyond the standard Ginzburg-Landau paradigm in low-dimensional magnetic systems with no local order parameter.

8.
Phys Rev Lett ; 125(21): 217202, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33274981

RESUMEN

We investigate the role of disorder on the various topological magnonic phases present in deformed honeycomb ferromagnets. To this end, we introduce a bosonic Bott index to characterize the topology of magnon spectra in finite, disordered systems. The consistency between the Bott index and Chern number is numerically established in the clean limit. We demonstrate that topologically protected magnon edge states are robust to moderate disorder and, as anticipated, localized in the strong regime. We predict a disorder-driven topological phase transition, a magnonic analog of the "topological Anderson insulator" in electronic systems, where the disorder is responsible for the emergence of the nontrivial topology. Combining the results for the Bott index and transport properties, we show that bulk-boundary correspondence holds for disordered topological magnons. Our results open the door for research on topological magnonics as well as other bosonic excitations in finite and disordered systems.

9.
Phys Rev Lett ; 125(21): 217201, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33274995

RESUMEN

Magnon polarons, a type of hybridized excitations between magnons and phonons, were first reported in yttrium iron garnet as anomalies in the spin Seebeck effect responses. Here, we report an observation of antiferromagnetic (AFM) magnon polarons in a uniaxial AFM insulator Cr_{2}O_{3}. Despite the relatively higher energy of magnon than that of the acoustic phonons, near the spin-flop transition of ∼6 T, the left-handed magnon spectrum shifts downward to hybridize with the acoustic phonons to form AFM magnon polarons, which can also be probed by the spin Seebeck effect. The spin Seebeck signal is founded to be enhanced due to the magnon polarons at low temperatures.

10.
Phys Rev Lett ; 123(16): 167203, 2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31702374

RESUMEN

Electrons and holes residing on the opposing sides of an insulating barrier and experiencing an attractive Coulomb interaction can spontaneously form a coherent state known as an indirect exciton condensate. We study a trilayer system where the barrier is an antiferromagnetic insulator. The electrons and holes here additionally interact via interfacial coupling to the antiferromagnetic magnons. We show that by employing magnetically uncompensated interfaces, we can design the magnon-mediated interaction to be attractive or repulsive by varying the thickness of the antiferromagnetic insulator by a single atomic layer. We derive an analytical expression for the critical temperature T_{c} of the indirect exciton condensation. Within our model, anisotropy is found to be crucial for achieving a finite T_{c}, which increases with the strength of the exchange interaction in the antiferromagnetic bulk. For realistic material parameters, we estimate T_{c} to be around 7 K, the same order of magnitude as the current experimentally achievable exciton condensation where the attraction is solely due to the Coulomb interaction. The magnon-mediated interaction is expected to cooperate with the Coulomb interaction for condensation of indirect excitons, thereby providing a means to significantly increase the exciton condensation temperature range.

11.
Phys Rev Lett ; 122(21): 217203, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31283310

RESUMEN

The recent discovery of magnetism in two-dimensional van der Waals systems opens the door to discovering exciting physics. We investigate how a current can control the ferromagnetic properties of such materials. Using symmetry arguments, we identify a recently realized system in which the current-induced spin torque is particularly simple and powerful. In Fe_{3}GeTe_{2}, a single parameter determines the strength of the spin-orbit torque for a uniform magnetization. The spin-orbit torque acts as an effective out-of-equilibrium free energy. The contribution of the spin-orbit torque to the effective free energy introduces new in-plane magnetic anisotropies to the system. Therefore, we can tune the system from an easy-axis ferromagnet via an easy-plane ferromagnet to another easy-axis ferromagnet with increasing current density. This finding enables unprecedented control and provides the possibility to study the Berezinskiǐ-Kosterlitz-Thouless phase transition in the 2D XY model and its associated critical exponents.

12.
Phys Rev Lett ; 122(10): 107201, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30932661

RESUMEN

The plethora of recent discoveries in the field of topological electronic insulators has inspired a search for boson systems with similar properties. There are predictions that ferromagnets on a two-dimensional honeycomb lattice may host chiral edge magnons. In such systems, we theoretically study how magnons and phonons couple. We find topological magnon polarons around the avoided crossings between phonons and topological magnons. Exploiting this feature along with our finding of Rayleigh-like edge phonons in armchair ribbons, we demonstrate the existence of chiral edge modes with a phononic character. We predict that these modes mediate a chirality in the coherent phonon response and suggest measuring this effect via elastic transducers. These findings reveal a possible approach towards heat management in future devices.

13.
Phys Rev Lett ; 122(10): 106601, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30932662

RESUMEN

We investigate the finite-size scaling of the boundary quantum geometric tensor (QGT) numerically close to the Anderson localization transition in the presence of small external magnetic fields. The QGT exhibits universal scaling and reveals the crossover between the orthogonal and unitary critical states in weak random magnetic fields. The flow of the QGT near the critical points determines the critical exponents. Critical distributions of the QGT are universal and exhibit a remarkable isotropy even in a homogeneous magnetic field. We predict universal and isotropic Hall conductance fluctuations at the metal-insulator transition in an external magnetic field.

14.
Phys Rev Lett ; 122(14): 147201, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-31050456

RESUMEN

Spin valves form a key building block in a wide range of spintronic concepts and devices from magnetoresistive read heads to spin-transfer-torque oscillators. We elucidate the dependence of the magnetic damping in the free layer on the angle its equilibrium magnetization makes with that in the fixed layer. The spin pumping-mediated damping is anisotropic and tensorial, with Gilbert- and Bloch-like terms. Our investigation reveals a mechanism for tuning the free layer damping in situ from negligible to a large value via the orientation of fixed layer magnetization, especially when the magnets are electrically insulating. Furthermore, we expect the Bloch contribution that emerges from the longitudinal spin accumulation in the nonmagnetic spacer to play an important role in a wide range of other phenomena in spin valves.

15.
Phys Rev Lett ; 121(8): 087204, 2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30192613

RESUMEN

Microwaves couple to magnetic moments in both ferromagnets and antiferromagnets. Although the magnons in ferromagnets and antiferromagnets radically differ, they can become entangled via strong coupling to the same microwave mode in a cavity. The equilibrium configuration of the magnetic moments crucially governs the coupling between the different magnons, because the antiferromagnetic and ferromagnetic magnons have opposite spins when their dispersion relations cross. We derive analytical expressions for the coupling strengths and find that the coupling between antiferromagnets and ferromagnets is comparable to the coupling between two ferromagnets. Our findings reveal a robust link between cavity spintronics with ferromagnets and antiferromagnets.

16.
Phys Rev Lett ; 120(19): 197202, 2018 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-29799247

RESUMEN

In antiferromagnetic (AFM) thin films, broken inversion symmetry or coupling to adjacent heavy metals can induce Dzyaloshinskii-Moriya (DM) interactions. Knowledge of the DM parameters is essential for understanding and designing exotic spin structures, such as hedgehog Skyrmions and chiral Néel walls, which are attractive for use in novel information storage technologies. We introduce a framework for computing the DM interaction in two-dimensional Rashba antiferromagnets. Unlike in Rashba ferromagnets, the DM interaction is not suppressed even at low temperatures. The material parameters control both the strength and the sign of the interfacial DM interaction. Our results suggest a route toward controlling the DM interaction in AFM materials by means of doping and electric fields.

17.
Phys Rev Lett ; 119(5): 056804, 2017 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-28949746

RESUMEN

We investigate spin transport by thermally excited spin waves in an antiferromagnetic insulator. Starting from a stochastic Landau-Lifshitz-Gilbert phenomenology, we obtain the out-of-equilibrium spin-wave properties. In linear response to spin biasing and a temperature gradient, we compute the spin transport through a normal-metal-antiferromagnet-normal-metal heterostructure. We show that the spin conductance diverges as one approaches the spin-flop transition; this enhancement of the conductance should be readily observable by sweeping the magnetic field across the spin-flop transition. The results from such experiments may, on the one hand, enhance our understanding of spin transport near a phase transition, and on the other be useful for applications that require a large degree of tunability of spin currents. In contrast, the spin Seebeck coefficient does not diverge at the spin-flop transition. Furthermore, the spin Seebeck coefficient is finite even at zero magnetic field, provided that the normal metal contacts break the symmetry between the antiferromagnetic sublattices.

18.
Phys Rev Lett ; 118(13): 137201, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28409991

RESUMEN

Antiferromagnets may exhibit spin superfluidity since the dipole interaction is weak. We seek to establish that this phenomenon occurs in insulators such as NiO, which is a good spin conductor according to previous studies. We investigate nonlocal spin transport in a planar antiferromagnetic insulator with a weak uniaxial anisotropy. The anisotropy hinders spin superfluidity by creating a substantial threshold that the current must overcome. Nevertheless, we show that applying a high magnetic field removes this obstacle near the spin-flop transition of the antiferromagnet. Importantly, the spin superfluidity can then persist across many micrometers, even in dirty samples.

19.
Phys Rev Lett ; 116(20): 207603, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27258884

RESUMEN

We consider the current-induced dynamics of insulating antiferromagnets in a spin Hall geometry. Sufficiently large in-plane currents perpendicular to the Néel order trigger spontaneous oscillations at frequencies between the acoustic and the optical eigenmodes. The direction of the driving current determines the chirality of the excitation. When the current exceeds a threshold, the combined effect of spin pumping and current-induced torques introduces a dynamic feedback that sustains steady-state oscillations with amplitudes controllable via the applied current. The ac voltage output is calculated numerically as a function of the dc current input for different feedback strengths. Our findings open a route towards terahertz antiferromagnetic spin-torque oscillators.

20.
Phys Rev Lett ; 115(23): 237201, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26684138

RESUMEN

In ferromagnets, magnons may condense into a single quantum state. Analogous to superconductors, this quantum state may support transport without dissipation. Recent works suggest that longitudinal spin transport through a thin-film ferromagnet is an example of spin superfluidity. Although intriguing, this tantalizing picture ignores long-range dipole interactions; here, we demonstrate that such interactions dramatically affect spin transport. In single-film ferromagnets, "spin superfluidity" only exists at length scales (a few hundred nanometers in yttrium iron garnet) somewhat larger than the exchange length. Over longer distances, dipolar interactions destroy spin superfluidity. Nevertheless, we predict the reemergence of spin superfluidity in trilayer ferromagnet-normal metal-ferromagnet films that are ∼1 µm in size. Such systems also exhibit other types of long-range spin transport in samples that are several micrometers in size.


Asunto(s)
Imanes/química , Modelos Teóricos , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA