Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 30(21): 38383-38404, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36258405

RESUMEN

In the context of digital in-line holographic microscopy, we describe an unsupervised methodology to estimate the aberrations of an optical microscopy system from a single hologram. The method is based on the Inverse Problems Approach reconstructions of holograms of spherical objects. The forward model is based on a Lorenz-Mie model distorted by optical aberrations described by Zernike polynomials. This methodology is thus able to characterize most varying aberrations in the field of view in order to take them into account to improve the reconstruction of any sample. We show that this approach increases the repeatability and quantitativity of the reconstructions in both simulations and experimental data. We use the Cramér-Rao lower bounds to study the accuracy of the reconstructions. Finally, we demonstrate the efficiency of this aberration calibration with image reconstructions using a phase retrieval algorithm as well as a regularized inverse problems algorithm.

2.
Appl Opt ; 61(5): B345-B355, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35201158

RESUMEN

We present a new method to achieve autofocus in digital holographic microscopy. The method is based on inserting calibrated objects into a sample placed on a slide. Reconstructing a hologram using the inverse problems approach makes it possible to precisely locate and measure the inserted objects and thereby derive the slide plane location. Numerical focusing can then be performed in a plane at any chosen distance from the slide plane of the sample in a reproducible manner and independently of the diversity of the objects in the sample.

3.
Sci Rep ; 13(1): 14437, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660181

RESUMEN

In multispectral digital in-line holographic microscopy (DIHM), aberrations of the optical system affect the repeatability of the reconstruction of transmittance, phase and morphology of the objects of interest. Here we address this issue first by model fitting calibration using transparent beads inserted in the sample. This step estimates the aberrations of the optical system as a function of the lateral position in the field of view and at each wavelength. Second, we use a regularized inverse problem approach (IPA) to reconstruct the transmittance and phase of objects of interest. Our method accounts for shift-variant chromatic and geometrical aberrations in the forward model. The multi-wavelength holograms are jointly reconstructed by favouring the colocalization of the object edges. The method is applied to the case of bacteria imaging in Gram-stained blood smears. It shows our methodology evaluates aberrations with good repeatability. This improves the repeatability of the reconstructions and delivers more contrasted spectral signatures in transmittance and phase, which could benefit applications of microscopy, such as the analysis and classification of stained bacteria.


Asunto(s)
Holografía , Microscopía , Bacterias , Calibración , Excipientes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA