Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 182(2): 447-462.e14, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32758418

RESUMEN

The precise mechanism by which oral infection contributes to the pathogenesis of extra-oral diseases remains unclear. Here, we report that periodontal inflammation exacerbates gut inflammation in vivo. Periodontitis leads to expansion of oral pathobionts, including Klebsiella and Enterobacter species, in the oral cavity. Amassed oral pathobionts are ingested and translocate to the gut, where they activate the inflammasome in colonic mononuclear phagocytes, triggering inflammation. In parallel, periodontitis results in generation of oral pathobiont-reactive Th17 cells in the oral cavity. Oral pathobiont-reactive Th17 cells are imprinted with gut tropism and migrate to the inflamed gut. When in the gut, Th17 cells of oral origin can be activated by translocated oral pathobionts and cause development of colitis, but they are not activated by gut-resident microbes. Thus, oral inflammation, such as periodontitis, exacerbates gut inflammation by supplying the gut with both colitogenic pathobionts and pathogenic T cells.


Asunto(s)
Colitis/patología , Enterobacter/fisiología , Microbioma Gastrointestinal , Klebsiella/fisiología , Boca/microbiología , Animales , Colitis/microbiología , Colon/microbiología , Colon/patología , Modelos Animales de Enfermedad , Enterobacter/aislamiento & purificación , Femenino , Inflamasomas/metabolismo , Interleucina-10/deficiencia , Interleucina-10/genética , Interleucina-1beta/metabolismo , Klebsiella/aislamiento & purificación , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Periodontitis/microbiología , Periodontitis/patología , Células Th17/citología , Células Th17/inmunología , Células Th17/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(4): e2218162120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36669099

RESUMEN

Resolution of inflammation and mucosal wound healing are crucial processes required to re-establish homeostasis following injury of mucosal tissues. Maresin-2 (MaR2), a lipid specialized pro-resolving mediator derived from omega-3 polyunsaturated fatty acid, has been reported to promote resolution of inflammation. However, a potential role for MaR2 in regulating mucosal repair remains undefined. Using lipidomic analyses, we demonstrate biosynthesis of MaR2 in healing intestinal mucosal wounds in vivo. Importantly, administration of exogenous MaR2 promoted mucosal repair following dextran sulfate sodium-induced colitis or biopsy-induced colonic mucosal injury. Functional analyses revealed that MaR2 promotes mucosal wound repair by driving intestinal epithelial migration through activation of focal cell-matrix adhesion signaling in primary human intestinal epithelial cells. Because of its labile nature, MaR2 is easily degradable and requires ultracold storage to maintain functionality. Thus, we created thermostable polylactic acid MaR2 nanoparticles that retain biological activity following extended storage at 4 °C or above. Taken together, these results establish MaR2 as a potent pro-repair lipid mediator with broad therapeutic potential for use in promoting mucosal repair in inflammatory diseases.


Asunto(s)
Colitis , Nanopartículas , Humanos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Intestinos , Mucosa Intestinal/fisiología , Inflamación , Sulfato de Dextran/efectos adversos
3.
FASEB J ; 34(2): 2326-2343, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31907993

RESUMEN

Polymorphonuclear neutrophils (PMNs) play a critical role in the innate immune response to invading pathogens. However, dysregulated mucosal trafficking of PMNs and associated epithelial tissue damage is a pathological hallmark of numerous inflammatory conditions including inflammatory bowel disease. The glycoprotein CD11b/CD18 plays a well-described role in regulating PMN transepithelial migration and PMN inflammatory functions. Previous studies have demonstrated that targeting of the N-linked glycan Lewis X on CD11b blocks PMN transepithelial migration (TEpM). Given evidence of glycosylation-dependent regulation of CD11b/CD18 function, we performed MALDI TOF Mass Spectrometry (MS) analyses on CD11b/CD18 purified from human PMNs. Unusual glycan epitopes identified on CD11b/CD18 included high Mannose oligosaccharides recognized by the Galanthus Nivalis lectin and biantennary galactosylated N-glycans recognized by the Phaseolus Vulgaris erythroagglutinin lectin. Importantly, we show that selective targeting of glycans on CD11b with such lectins results in altered intracellular signaling events that inhibit TEpM and differentially affect key PMN inflammatory functions including phagocytosis, superoxide release and apoptosis. Taken together, these data demonstrate that discrete glycan motifs expressed on CD11b/CD18 such as biantennary galactose could represent novel targets for selective manipulation of CD11b function and reduction of PMN-associated tissue damage in chronic inflammatory diseases.


Asunto(s)
Antígeno CD11b/inmunología , Antígenos CD18/inmunología , Epítopos/inmunología , Neutrófilos/inmunología , Antígeno CD11b/química , Antígenos CD18/química , Epítopos/química , Humanos , Lectinas de Unión a Manosa/química , Lectinas de Unión a Manosa/farmacología , Neutrófilos/química , Fagocitosis , Fitohemaglutininas/química , Fitohemaglutininas/farmacología , Lectinas de Plantas/química , Lectinas de Plantas/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Superóxidos/química , Superóxidos/inmunología , Migración Transendotelial y Transepitelial
4.
Immunol Rev ; 273(1): 94-111, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27558330

RESUMEN

Polymorphonuclear neutrophils (PMNs) are innate immune system cells that play an essential role in eradicating invading pathogens. PMN migration to sites of infection/inflammation requires exiting the microcirculation and subsequent crossing of epithelial barriers in mucosa-lined organs such as the lungs and intestines. Although these processes usually occur without significant damage to surrounding host tissues, dysregulated/excessive PMN transmigration and resultant bystander-tissue damage are characteristic of numerous mucosal inflammatory disorders. Mechanisms controlling PMN extravasation have been well characterized, but the molecular details regarding regulation of PMN migration across mucosal epithelia are poorly understood. Given that PMN migration across mucosal epithelia is strongly correlated with disease symptoms in many inflammatory mucosal disorders, enhanced understanding of the mechanisms regulating PMN transepithelial migration should provide insights into clinically relevant tissue-targeted therapies aimed at ameliorating PMN-mediated bystander-tissue damage. This review will highlight current understanding of the molecular interactions between PMNs and mucosal epithelia and the associated functional consequences.


Asunto(s)
Movimiento Celular , Células Epiteliales/fisiología , Inmunidad Mucosa , Inflamación/inmunología , Neutrófilos/inmunología , Animales , Terapia Biológica , Comunicación Celular , Humanos , Infiltración Neutrófila
5.
Am J Physiol Gastrointest Liver Physiol ; 312(1): G24-G33, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27856416

RESUMEN

The bone morphogenetic proteins (BMPs) regulate gastrointestinal homeostasis. We investigated the expression of BMP-4 and the localization and function of BMP signaling during colonic injury and inflammation. Mice expressing the ß-galactosidase (ß-gal) gene under the control of a BMP-responsive element (BRE), BMP-4-ß-gal/ mice, and animals generated by crossing villin-Cre mice to mice with floxed alleles of BMP receptor 1A (villin-Cre;Bmpr1aflox/flox) were treated with dextran sodium sulfate (DSS) to induce colonic injury and inflammation. Expression of BMP-4, ß-gal, BMPR1A, IL-8, α-smooth muscle actin, and phosphorylated Smad1, -5, and -8 was assessed by X-Gal staining, quantitative RT-PCR, and immunohistochemistry. Morphology of the colonic mucosa was examined by staining with hematoxylin and eosin. The effect of IFN-γ, TNF-α, IL-1ß, and IL-6 on BMP-4 mRNA expression was investigated in human intestinal fibroblasts, whereas that of BMP-4 on IL-8 was assessed in human colonic organoids. BMP-4 was localized in α-smooth muscle actin-positive mesenchymal cells while the majority of BMP-generated signals targeted the epithelium. DSS caused injury and inflammation leading to reduced expression of BMP-4 and of BMPR1A mRNAs, and to decreased BMP signaling. Deletion of BMPR1A enhanced colonic inflammation and damage. Administration of anti-TNF-α antibodies to DSS-treated mice ameliorated colonic inflammation and increased the expression of BMP-4 and BMPR1A mRNAs. TNF-α and IL-1ß inhibited both basal and IFN-γ-stimulated BMP-4 expression, whereas IL-6 had no effect. BMP-4 reduced TNF-α-stimulated IL-8 mRNA expressor IL-8 mRNA expression in the organoids. Inflammation and injury inhibit BMP-4 expression and signaling, leading to enhanced colonic damage and inflammation. These observations underscore the importance of BMP signaling in the regulation of intestinal inflammation and homeostasis. NEW & NOTEWORTHY: In this study we report a series of novel observations that underscore the importance of bone morphogenetic protein (BMP) signaling in the regulation of colonic homeostasis during the development of injury and inflammation. In particular, we present evidence that BMP signaling mitigates the response of the colonic epithelium to injury and inflammation and that cytokines, such as TNF-α and IL-1ß, inhibit the expression of BMP-4.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Colon/metabolismo , Inflamación/metabolismo , Transducción de Señal/fisiología , Animales , Proteína Morfogenética Ósea 4/genética , Colon/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interferón-alfa/farmacología , Interleucina-1beta/farmacología , Interleucina-6/farmacología , Interleucina-8/metabolismo , Ratones , Ratones Transgénicos , Factor de Necrosis Tumoral alfa/farmacología
6.
Am J Pathol ; 186(2): 297-311, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26687991

RESUMEN

Polymorphonuclear leukocytes (PMNs) are innate immune cells whose principal function is to migrate from the blood to sites of inflammation, where they exert crucial anti-infectious and immunomodulatory effects. However, dysregulated migration of PMNs into mucosal epithelial tissues is characteristic of chronic inflammatory disorders, including inflammatory bowel disease. Carbohydrate-mediated binding interactions between PMN Lewis glycans and endothelial glycan-binding proteins are critical for initial migration of PMN out of the vasculature. However, the role of Lewis glycans during transepithelial migration (TEM) has not been well characterized. Herein, we show that antibody blockade of Lewis X (Le(x)) displayed as terminal glycan residues on the PMN surface blocks chemotaxis and TEM while enhancing PMN-adhesive interactions with intestinal epithelia. Unexpectedly, targeting of subterminal Le(x) residues within glycan chains had no effect on PMN migration or adhesive interactions. There was increased surface expression of Le(x) on PMN after TEM, and blockade of terminal Le(x) regulated post-migratory PMN functions, increasing PMN phagocytosis and the surface mobilization of azurophilic (CD63, myeloperoxidase, and neutrophil elastase) and specific (CD66b and lactoferrin) granule markers. These findings suggest that terminal Le(x) represents a potential target for regulating PMN trafficking and function in inflamed mucosa. Furthermore, given its abundant expression on migrating PMN, Le(x) may be a rational target for modulating inflammation in diseases where dysregulated PMN influx is associated with host tissue damage.


Asunto(s)
Mucosa Intestinal/metabolismo , Antígeno Lewis X/inmunología , Neutrófilos/metabolismo , Fagocitosis/inmunología , Migración Transendotelial y Transepitelial/inmunología , Adhesión Celular/inmunología , Células Cultivadas , Quimiotaxis/inmunología , Epitelio/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/patología
7.
J Immunol ; 191(9): 4804-17, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24068663

RESUMEN

Polymorphonuclear leukocyte (PMN) migration across the intestinal epithelium closely parallels disease symptoms in patients with inflammatory bowel disease. PMN transepithelial migration (TEM) is a multistep process that terminates with PMN detachment from the apical epithelium into the lumen. Using a unique mAb (GM35), we have previously demonstrated that engagement of the CD44 variant containing exon 6 (CD44v6) blocks both PMN detachment and cleavage of CD44v6. In this article, we report that PMN binding to CD44v6 is mediated by protein-specific O-glycosylation with sialyl Lewis A (sLe(a)). Analyses of glycosyltransferase expression identified fucosyltransferase 3 (Fut3) as the key enzyme driving sLe(a) biosynthesis in human intestinal epithelial cells (IECs). Fut3 transfection of sLe(a)-deficient IECs resulted in robust expression of sLe(a). However, this glycan was not expressed on CD44v6 in these transfected IECs; therefore, engagement of sLe(a) had no effect on PMN TEM across these cells. Analyses of sLe(a) in human colonic mucosa revealed minimal expression in noninflamed areas, with striking upregulation under colitic conditions that correlated with increased expression of CD44v6. Importantly, intraluminal administration of mAb GM35 blocked PMN TEM and attenuated associated increases in intestinal permeability in a murine intestinal model of inflammation. These findings identify a unique role for protein-specific O-glycosylation in regulating PMN-epithelial interactions at the luminal surface of the intestine.


Asunto(s)
Fucosiltransferasas/metabolismo , Receptores de Hialuranos/metabolismo , Neutrófilos/metabolismo , Oligosacáridos/biosíntesis , Migración Transendotelial y Transepitelial/inmunología , Animales , Antígeno CA-19-9 , Adhesión Celular/inmunología , Células Cultivadas , Células Epiteliales/metabolismo , Glicosilación , Humanos , Receptores de Hialuranos/genética , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología
8.
JCI Insight ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078701

RESUMEN

Thrombospondin-1 (TSP1) is a matricellular protein associated with the regulation of cell migration through direct binding interactions with integrin proteins and by associating with other receptors known to regulate integrin function, including CD47 and CD36. We previously demonstrated that deletion of an epithelial TSP1 receptor CD47 attenuates epithelial wound repair following intestinal mucosal injury. However, the mechanisms by which TSP1 contributes to intestinal mucosal repair remains poorly understood. Our results show upregulated TSP1 expression in colonic mucosal wounds and impaired intestinal mucosal wound healing in vivo upon intestinal epithelial specific loss of TSP1 (VillinCre/+Thbs1f/f or Thbs1ΔIEC). We report that exposure to exogenous TSP1 enhanced migration of IECs in a CD47- and TGFß1-dependent manner, and that deficiency of TSP1 in primary murine colonic epithelial cells resulted in impaired wound healing. Mechanistically, TSP1 modulated epithelial actin cytoskeletal dynamics by suppression of RhoA activity, activation of Rac1, and changes in F-actin bundling. Overall, TSP1 was found to regulate intestinal mucosal wound healing via CD47 and TGFß1, coordinate integrin-containing cell-matrix adhesion dynamics and remodel the actin cytoskeleton in migrating epithelial cells to enhance cell motility and promote wound repair.

9.
JCI Insight ; 8(5)2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36719745

RESUMEN

Polymorphonuclear neutrophils (PMNs) play a critical role in clearing invading microbes and promoting tissue repair following infection/injury. However, dysregulated PMN trafficking and associated tissue damage is pathognomonic of numerous inflammatory mucosal diseases. The final step in PMN influx into mucosal lined organs (including the lungs, kidneys, skin, and gut) involves transepithelial migration (TEpM). The ß2-integrin CD11b/CD18 plays an important role in mediating PMN intestinal trafficking, with recent studies highlighting that terminal fucose and GlcNAc glycans on CD11b/CD18 can be targeted to reduce TEpM. However, the role of the most abundant terminal glycan, sialic acid (Sia), in regulating PMN epithelial influx and mucosal inflammatory function is not well understood. Here we demonstrate that inhibiting sialidase-mediated removal of α2-3-linked Sia from CD11b/CD18 inhibits PMN migration across intestinal epithelium in vitro and in vivo. Sialylation was also found to regulate critical PMN inflammatory effector functions, including degranulation and superoxide release. Finally, we demonstrate that sialidase inhibition reduces bacterial peptide-mediated CD11b/CD18 activation in PMN and blocks downstream intracellular signaling mediated by spleen tyrosine kinase (Syk) and p38 MAPK. These findings suggest that sialylated glycans on CD11b/CD18 represent potentially novel targets for ameliorating PMN-mediated tissue destruction in inflammatory mucosal diseases.


Asunto(s)
Neutrófilos , Migración Transendotelial y Transepitelial , Mucosa Intestinal , Neuraminidasa , Neutrófilos/fisiología , Polisacáridos , Antígeno CD11b/inmunología , Antígenos CD18/inmunología
10.
Inflamm Bowel Dis ; 29(7): 1133-1144, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-36688460

RESUMEN

BACKGROUND: Incidences of inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, are escalating worldwide and can be considered a global public health problem. Given that the gold standard approach to IBD therapeutics focuses on reducing the severity of symptoms, there is an urgent unmet need to develop alternative therapies that halt not only inflammatory processes but also promote mucosal repair. Previous studies have identified increased stem cell factor (SCF) expression in inflamed intestinal mucosal tissues. However, the role that SCF plays in mediating intestinal inflammation and repair has not been explored. METHODS: Changes in the expression of SCF were evaluated in the colonic tissue of healthy mice and during dextran sodium sulfate (DSS)-induced colitis. Furthermore, mucosal wound healing and colitis severity were analyzed in mice subjected to either mechanical biopsy or DSS treatment, respectively, following intestinal epithelial cell-specific deletion of SCF or anti-SCF antibody administration. RESULTS: We report robust expression of SCF by intestinal epithelial cells during intestinal homeostasis with a switch to immune cell-produced SCF during colitis. Data from mice with intestinal epithelial cell-specific deletion of SCF highlight the importance of immune cell-produced SCF in driving the pathogenesis of colitis. Importantly, antibody-mediated neutralization of total SCF or the specific SCF248 isoform decreased immune cell infiltration and enhanced mucosal wound repair following biopsy-induced colonic injury or DSS-induced colitis. CONCLUSIONS: These data demonstrate that SCF functions as a pro-inflammatory mediator in mucosal tissues and that specific neutralization of SCF248 could be a viable therapeutic option to reduce intestinal inflammation and promote mucosal wound repair in individuals with IBD.


Our investigation demonstrates that blocking cleavable SCF248 isoform by administration of specific stem cell factor antibodies enhances healing of the intestinal mucosa and restores critical barrier function, suggesting an alternative therapeutic option to treat individuals with active IBD.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Colitis/tratamiento farmacológico , Colitis/patología , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Sulfato de Dextran , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/patología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Factor de Células Madre/antagonistas & inhibidores , Factor de Células Madre/metabolismo
11.
Nat Commun ; 14(1): 6214, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798277

RESUMEN

Claudin family tight junction proteins form charge- and size-selective paracellular channels that regulate epithelial barrier function. In the gastrointestinal tract, barrier heterogeneity is attributed to differential claudin expression. Here, we show that claudin-23 (CLDN23) is enriched in luminal intestinal epithelial cells where it strengthens the epithelial barrier. Complementary approaches reveal that CLDN23 regulates paracellular ion and macromolecule permeability by associating with CLDN3 and CLDN4 and regulating their distribution in tight junctions. Computational modeling suggests that CLDN23 forms heteromeric and heterotypic complexes with CLDN3 and CLDN4 that have unique pore architecture and overall net charge. These computational simulation analyses further suggest that pore properties are interaction-dependent, since differently organized complexes with the same claudin stoichiometry form pores with unique architecture. Our findings provide insight into tight junction organization and propose a model whereby different claudins combine to form multiple distinct complexes that modify epithelial barrier function by altering tight junction structure.


Asunto(s)
Claudinas , Uniones Estrechas , Uniones Estrechas/metabolismo , Claudinas/genética , Claudinas/química , Simulación por Computador , Células Epiteliales/metabolismo
12.
J Immunol ; 185(11): 7026-36, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20974992

RESUMEN

The migration of polymorphonuclear leukocytes (PMNs) across the intestinal epithelium is a histopathological hallmark of many mucosal inflammatory diseases including inflammatory bowel disease. The terminal transmigration step is the detachment of PMNs from the apical surface of the epithelium and their subsequent release into the intestinal lumen. The current study sought to identify epithelial proteins involved in the regulation of PMN migration across intestinal epithelium at the stage at which PMNs reach the apical epithelial surface. A panel of Abs reactive with IFN-γ-stimulated T84 intestinal epithelial cells was generated. Screening efforts identified one mAb, GM35, that prevented PMN detachment from the apical epithelial surface. Microsequencing studies identified the GM35 Ag as human CD44. Transfection studies confirmed this result by demonstrating the loss of the functional activity of the GM35 mAb following attenuation of epithelial CD44 protein expression. Immunoblotting and immunofluorescence revealed the GM35 Ag to be an apically expressed v6 variant exon-containing form of human CD44 (CD44v6). ELISA analysis demonstrated the release of soluble CD44v6 by T84 cells during PMN transepithelial migration. In addition, the observed release of CD44v6 was blocked by GM35 treatment, supporting a connection between CD44v6 release and PMN detachment. Increased expression of CD44v6 and the GM35 Ag was detected in inflamed ulcerative colitis tissue. This study demonstrates that epithelial-expressed CD44v6 plays a role in PMN clearance during inflammatory episodes through regulation of the terminal detachment of PMNs from the apical epithelial surface into the lumen of the intestine.


Asunto(s)
Movimiento Celular/inmunología , Receptores de Hialuranos/fisiología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Variación Antigénica/fisiología , Células CACO-2 , Adhesión Celular/inmunología , Células Cultivadas , Endotelio Vascular/citología , Endotelio Vascular/inmunología , Endotelio Vascular/metabolismo , Células HT29 , Células HeLa , Humanos , Mediadores de Inflamación/fisiología , Mucosa Intestinal/citología , Neutrófilos/citología , Isoformas de Proteínas/fisiología , Propiedades de Superficie
13.
J Immunol ; 184(12): 7186-95, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20483731

RESUMEN

Appropriate microbial colonization protects the developing intestine by promoting epithelial barrier function and fostering mucosal tolerance to luminal bacteria. Commensal flora mediate their protective effects through TLR9-dependent activation of cytokines, such as type I IFNs (alpha, beta) and IL-10. Although IFN-beta promotes apoptosis, IFN-alpha activates specific antiapoptotic target genes whose actions preserve epithelial barrier integrity. We have recently identified guanylate binding protein-1 (GBP-1) as an antiapoptotic protein, regulated by both type I and type II IFNs, that promotes intestinal epithelial barrier integrity in mature intestine. However, the mechanisms by which commensal bacteria regulate epithelial apoptosis during colonization of immature intestine and the contributions of GBP-1 are unknown. The healthy newborn intestine is initially colonized with bacterial species present in the maternal gastrointestinal tract, including nonpathogenic Escherichia coli. Therefore, we examined the influence of commensal E. coli on cytokine expression and candidate mediators of apoptosis in preweaned mice. Specifically, enteral exposure of 2 wk-old mice to commensal E. coli for 24 h selectively increased both IFN-alphaA and GBP-1 mRNA expression and prevented staurosporine-induced epithelial apoptosis. Exogenous IFN-alphaA treatment also induced GBP-1 expression and protected against staurosporine-induced apoptosis in a GBP-1 dependent manner, both in vitro and ex vivo. These findings identify a role for IFN-alphaA-mediated GBP-1 expression in the prevention of intestinal epithelial apoptosis by commensal bacteria. Thus IFN-alphaA mediates the beneficial effects of commensal bacteria and may be a promising therapeutic target to promote barrier integrity and prevent the inappropriate inflammatory responses seen in developing intestine as in necrotizing enterocolitis.


Asunto(s)
Escherichia coli/inmunología , Proteínas de Unión al GTP/inmunología , Inmunidad Mucosa/fisiología , Interferón gamma/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Animales , Apoptosis/inmunología , Proteínas de Unión al GTP/biosíntesis , Expresión Génica , Regulación de la Expresión Génica/inmunología , Humanos , Etiquetado Corte-Fin in Situ , Interferón gamma/metabolismo , Mucosa Intestinal/crecimiento & desarrollo , Ratones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Mucosal Immunol ; 15(2): 211-222, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34782709

RESUMEN

Glycans are essential cellular components that facilitate a range of critical functions important for tissue development and mucosal homeostasis. Furthermore, specific alterations in glycosylation represent important diagnostic hallmarks of cancer that contribute to tumor cell dissociation, invasion, and metastasis. However, much less is known about how glycosylation contributes to the pathobiology of inflammatory mucosal diseases. Here we will review how epithelial and immune cell glycosylation regulates gut homeostasis and how inflammation-driven changes in glycosylation contribute to intestinal pathobiology.


Asunto(s)
Mucosa Intestinal , Polisacáridos , Glicosilación , Homeostasis , Humanos , Inflamación/metabolismo , Polisacáridos/metabolismo
15.
JCI Insight ; 5(12)2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32427587

RESUMEN

Dysregulated healing of injured mucosa is a hallmark of many pathological conditions, including inflammatory bowel disease. Mucosal injury and chronic intestinal inflammation are also associated with alterations in epithelial glycosylation. Previous studies have revealed that inflammation-induced glycan sialyl Lewis A on epithelial CD44v6 acts as a ligand for transmigrating PMNs. Here we report that robust sialylated Lewis glycan expression was induced in colonic mucosa from individuals with ulcerative colitis and Crohn disease as well as in the colonic epithelium of mice with colitis induced by dextran sodium sulfate (DSS). Targeting of sialylated epithelial Lewis glycans with mAb GM35 reduced disease activity and improved mucosal integrity during DSS-induced colitis in mice. Wound healing studies revealed increased epithelial proliferation and migration responses as well as improved mucosal repair after ligation of epithelial sialyl Lewis glycans. Finally, we showed that GM35-mediated increases in epithelial proliferation and migration were mediated through activation of kinases that signal downstream of CD44v6 (Src, FAK, Akt). These findings suggest that sialylated Lewis glycans on CD44v6 represent epithelial targets for improved recovery of intestinal barrier function and restitution of mucosal homeostasis after inflammation or injury.


Asunto(s)
Colitis/metabolismo , Colon/patología , Células Epiteliales/metabolismo , Mucosa Intestinal/patología , Cicatrización de Heridas/fisiología , Animales , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colon/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/patología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL
16.
Nat Commun ; 11(1): 513, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980634

RESUMEN

Gut microbiota and their metabolites are instrumental in regulating intestinal homeostasis. However, early-life microbiota associated influences on intestinal development remain incompletely understood. Here we demonstrate that co-housing of germ-free (GF) mice with specific-pathogen free (SPF) mice at weaning (exGF) results in altered intestinal gene expression. Our results reveal that one highly differentially expressed gene, erythroid differentiation regulator-1 (Erdr1), is induced during development in SPF but not GF or exGF mice and localizes to Lgr5+ stem cells and transit amplifying (TA) cells. Erdr1 functions to induce Wnt signaling in epithelial cells, increase Lgr5+ stem cell expansion, and promote intestinal organoid growth. Additionally, Erdr1 accelerates scratch-wound closure in vitro, increases Lgr5+ intestinal stem cell regeneration following radiation-induced injury in vivo, and enhances recovery from dextran sodium sulfate (DSS)-induced colonic damage. Collectively, our findings indicate that early-life microbiota controls Erdr1-mediated intestinal epithelial proliferation and regeneration in response to mucosal damage.


Asunto(s)
Proteínas de la Membrana/metabolismo , Microbiota , Regeneración , Células Madre/citología , Proteínas Supresoras de Tumor/metabolismo , Animales , Proliferación Celular/genética , Colitis/inducido químicamente , Colitis/microbiología , Colitis/patología , Sulfato de Dextran , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Vida Libre de Gérmenes , Humanos , Luciferasas/metabolismo , Ratones Endogámicos C57BL , Microbiota/genética , Organoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Madre/metabolismo , Vía de Señalización Wnt/genética , Cicatrización de Heridas/genética
17.
J Clin Invest ; 129(8): 2983-2993, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31329162

RESUMEN

Skin and intestinal epithelial barriers play a pivotal role in protecting underlying tissues from harsh external environments. The protective role of these epithelia is, in part, dependent on a remarkable capacity to restore barrier function and tissue homeostasis after injury. In response to damage, epithelial wounds repair by a series of events that integrate epithelial responses with those of resident and infiltrating immune cells including neutrophils and monocytes/macrophages. Compromise of this complex interplay predisposes to development of chronic nonhealing wounds, contributing to morbidity and mortality of many diseases. Improved understanding of crosstalk between epithelial and immune cells during wound repair is necessary for development of better pro-resolving strategies to treat debilitating complications of disorders ranging from inflammatory bowel disease to diabetes. In this Review we focus on epithelial and innate immune cell interactions that mediate wound healing and restoration of tissue homeostasis in the skin and intestine.


Asunto(s)
Comunicación Celular/inmunología , Células Epiteliales/inmunología , Homeostasis/inmunología , Neutrófilos/inmunología , Cicatrización de Heridas/inmunología , Animales , Diabetes Mellitus/inmunología , Diabetes Mellitus/patología , Células Epiteliales/patología , Humanos , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología , Neutrófilos/patología , Piel/inmunología , Piel/patología , Heridas y Lesiones/inmunología , Heridas y Lesiones/patología
18.
Mol Biol Cell ; 30(5): 566-578, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30625033

RESUMEN

Junctional adhesion molecule-A (JAM-A), an epithelial tight junction protein, plays an important role in regulating intestinal permeability through association with a scaffold signaling complex containing ZO-2, Afadin, and the small GTPase Rap2. Under inflammatory conditions, we report that the cytoplasmic tail of JAM-A is tyrosine phosphorylated (p-Y280) in association with loss of barrier function. While barely detectable Y280 phosphorylation was observed in confluent monolayers of human intestinal epithelial cells under basal conditions, exposure to cytokines TNFα, IFNγ, IL-22, or IL-17A, resulted in compromised barrier function in parallel with increased p-Y280. Phosphorylation was Src kinase dependent, and we identified Yes-1 and PTPN13 as a major kinase and phosphatase for p-JAM-A Y280, respectively. Moreover, cytokines IL-22 or IL-17A induced increased activity of Yes-1. Furthermore, the Src kinase inhibitor PP2 rescued cytokine-induced epithelial barrier defects and inhibited phosphorylation of JAM-A Y280 in vitro. Phosphorylation of JAM-A Y280 and increased permeability correlated with reduced JAM-A association with active Rap2. Finally, we observed increased phosphorylation of Y280 in colonic epithelium of individuals with ulcerative colitis and in mice with experimentally induced colitis. These findings support a novel mechanism by which tyrosine phosphorylation of JAM-A Y280 regulates epithelial barrier function during inflammation.


Asunto(s)
Células Epiteliales/metabolismo , Inflamación/patología , Intestinos/patología , Molécula A de Adhesión de Unión/metabolismo , Fosfotirosina/metabolismo , Secuencia de Aminoácidos , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Citocinas/farmacología , Sulfato de Dextran , Células HEK293 , Humanos , Intestinos/química , Ratones Endogámicos C57BL , Modelos Biológicos , Fosforilación/efectos de los fármacos , Proteína Tirosina Fosfatasa no Receptora Tipo 13/metabolismo , Proteínas Proto-Oncogénicas c-yes/metabolismo , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Proteínas de Unión al GTP rap/metabolismo
19.
Mucosal Immunol ; 12(4): 909-918, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30971752

RESUMEN

Pathobiology of several chronic inflammatory disorders, including ulcerative colitis and Crohn's disease is related to intermittent, spontaneous injury/ulceration of mucosal surfaces. Disease morbidity has been associated with pathologic release of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα). In this report, we show that TNFα promotes intestinal mucosal repair through upregulation of the GPCR platelet activating factor receptor (PAFR) in the intestinal epithelium. Platelet activating factor (PAF) was increased in healing mucosal wounds and its engagement with epithelial PAFR leads to activation of epidermal growth factor receptor, Src and Rac1 signaling to promote wound closure. Consistent with these findings, delayed colonic mucosal repair was observed after administration of a neutralizing TNFα antibody and in mice lacking PAFR. These findings suggest that in the injured mucosa, the pro-inflammatory milieu containing TNFα and PAF sets the stage for reparative events mediated by PAFR signaling.


Asunto(s)
Epitelio/metabolismo , Membrana Mucosa/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Cicatrización de Heridas , Proteína ADAM10/metabolismo , Animales , Biomarcadores , Epitelio/patología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Membrana Mucosa/patología , FN-kappa B/metabolismo , Glicoproteínas de Membrana Plaquetaria/genética , Especies Reactivas de Oxígeno/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteína de Unión al GTP rac1/metabolismo
20.
Front Immunol ; 9: 1033, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29881378

RESUMEN

Estradiol-based therapies predispose women to vaginal infections. Moreover, it has long been known that neutrophils are absent from the vaginal lumen during the ovulatory phase (high estradiol). However, the mechanisms that regulate neutrophil influx to the vagina remain unknown. We investigated the neutrophil transepithelial migration (TEM) into the vaginal lumen. We revealed that estradiol reduces the CD44 and CD47 epithelial expression in the vaginal ectocervix and fornix, which retain neutrophils at the apical epithelium through the estradiol receptor-alpha. In contrast, luteal progesterone increases epithelial expression of CD44 and CD47 to promote neutrophil migration into the vaginal lumen and Candida albicans destruction. Distinctive to vaginal mucosa, neutrophil infiltration is contingent to sex hormones to prevent sperm from neutrophil attack; although it may compromise immunity during ovulation. Thus, sex hormones orchestrate tolerance and immunity in the vaginal lumen by regulating neutrophil TEM.


Asunto(s)
Candidiasis Vulvovaginal/inmunología , Receptor alfa de Estrógeno/genética , Infiltración Neutrófila , Neutrófilos/inmunología , Migración Transendotelial y Transepitelial , Vagina/inmunología , Animales , Antígeno CD47/genética , Antígeno CD47/inmunología , Candida albicans , Células Cultivadas , Cuello del Útero/inmunología , Cuello del Útero/microbiología , Estradiol/farmacología , Receptor alfa de Estrógeno/inmunología , Femenino , Hormonas Esteroides Gonadales/farmacología , Receptores de Hialuranos/genética , Receptores de Hialuranos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Progesterona/farmacología , Vagina/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA