RESUMEN
Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasm of early childhood with a poor survival rate, thus there is a requirement for improved treatment strategies. Induced pluripotent stem cells offer the ability to model disease and develop new treatment strategies. JMML is frequently associated with mutations in PTPN11. Children with Noonan syndrome, a development disorder, have an increased incidence of JMML associated with specific germline mutations in PTPN11. We undertook a proteomic assessment of myeloid cells derived from induced pluripotent stem cells obtained from Noonan syndrome patients with PTPN11 mutations, either associated or not associated with an increased incidence of JMML. We report that the proteomic perturbations induced by the leukemia-associated PTPN11 mutations are associated with TP53 and NF-Kκb signaling. We have previously shown that MYC is involved in the differential gene expression observed in Noonan syndrome patients associated with an increased incidence of JMML. Thus, we employed drugs to target these pathways and demonstrate differential effects on clonogenic hematopoietic cells derived from Noonan syndrome patients, who develop JMML and those who do not. Further, we demonstrated these small molecular inhibitors, JQ1 and CBL0137, preferentially extinguish primitive hematopoietic cells from sporadic JMML patients as opposed to cells from healthy individuals.
Asunto(s)
Células Madre Pluripotentes Inducidas , Leucemia Mielomonocítica Juvenil , Síndrome de Noonan , Niño , Preescolar , Humanos , Leucemia Mielomonocítica Juvenil/tratamiento farmacológico , Leucemia Mielomonocítica Juvenil/genética , Mutación , ProteómicaRESUMEN
Over the last decade, the significance of the homeostatic CC chemokine receptor-7 and its ligands CC chemokine ligand-19 (CCL19) and CCL21, in various types of cancer, particularly mammary carcinoma, has been highlighted. The chemokine receptor CCX-CKR is a high-affinity receptor for these chemokine ligands but rather than inducing classical downstream signalling events promoting migration, it instead sequesters and targets its ligands for degradation, and appears to function as a regulator of the bioavailability of these chemokines in vivo. Therefore, in this study, we tested the hypothesis that local regulation of chemokine levels by CCX-CKR expressed on tumours alters tumour growth and metastasis in vivo. Expression of CCX-CKR on 4T1.2 mouse mammary carcinoma cells inhibited orthotopic tumour growth. However, this effect could not be correlated with chemokine scavenging in vivo and was not mediated by host adaptive immunity. Conversely, expression of CCX-CKR on 4T1.2 cells resulted in enhanced spontaneous metastasis and haematogenous metastasis in vivo. In vitro characterisation of the tumourigenicity of CCX-CKR-expressing 4T1.2 cells suggested accelerated epithelial-mesenchymal transition (EMT) revealed by their more invasive and motile character, lower adherence to the extracellular matrix and to each other, and greater resistance to anoikis. Further analysis of CCX-CKR-expressing 4T1.2 cells also revealed that transforming growth factor (TGF)-ß1 expression was increased both at mRNA and protein levels leading to enhanced autocrine phosphorylation of Smad 2/3 in these cells. Together, our data show a novel function for the chemokine receptor CCX-CKR as a regulator of TGF-ß1 expression and the EMT in breast cancer cells.
Asunto(s)
Carcinoma/patología , Transición Epitelial-Mesenquimal , Neoplasias Mamarias Experimentales/patología , Receptores CCR/metabolismo , Inmunidad Adaptativa , Animales , Carcinoma/genética , Carcinoma/metabolismo , Quimiocinas/metabolismo , Transición Epitelial-Mesenquimal/genética , Femenino , Homeostasis , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Metástasis de la Neoplasia , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
BACKGROUND: Cancer cell migration is fundamentally required for breast tumour invasion and metastasis. The insulin-like growth factor 1 tyrosine kinase receptor (IGF-1R) and the chemokine G-protein coupled receptor, CXCR4 have been shown to play an important role in breast cancer metastasis. Our previous study has shown that IGF-1R can transactivate CXCR4 via a physical association in the human MDA-MB-231 metastatic breast cancer cell line and that this plays a key role in IGF-I-induced migration of these cells. In the present study we used pharmacological inhibition and RNAi to identify PI3Kγ as an important migration signalling molecule downstream of receptor transactivation in MDA-MB-231 cells. To identify PI3Kγ-regulated proteins upon transactivation of CXCR4 by IGF-I, we undertook a comparative proteomics approach using 2-D- Fluorescence Difference Gel Electrophoresis (DIGE) and identified the proteins by mass spectrometry. RESULTS: These experiments identified eukaryotic elongation factor 2 (eEF2) as a novel downstream target of PI3Kγ after activation of the IGF-1R-CXCR4 heterodimer by IGF-I. Further analysis demonstrated that eEF2 is phosphorylated in MDA-MB-231 cells in response to IGF-I and that this is dependent on PI3Kγ activity. CONCLUSIONS: Our data imply a novel role for PI3Kγ in facilitating cell migration by regulating phosphorylation of eEF2.
RESUMEN
The gp130(F/F) genetically engineered mouse (GEM) model reproducibly and predictably develops a gastric adenoma phenotype resembling the primary lesions of human intestinal-type gastric cancer (GC). Accordingly, changes to the serum proteome of gp130(F/F) mice may uncover early-stage GC biomarkers. Here, we have employed several double and compound mutant GEM strains that display distinct phenotypes with respect to gastric tumour load and inflammatory response, thereby mimicking different states of inflammation-associated early-stage GC in humans. This allowed us to distinguish between proteomic changes associated with tumourigenesis rather than confounding systemic inflammation. The comparative proteomic workflow involved depletion of high abundance proteins, 2D-DIGE analysis and protein identification by LC-MS/MS. The differential expression of 112 2D-DIGE spots specifically correlated with the tumour-bearing phenotype, corresponding to 31 murine proteins and their 28 human orthologues. Eight proteins were selected for validation in GC patient sera versus healthy controls. Significant increases in serum apolipoprotein E and haptoglobin, and decreases in afamin and clusterin, were confirmed by ELISA. Receiver operating characteristic analysis revealed that these proteins may be more sensitive and specific discriminators of GC than the existing clinical marker CA72-4.