Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Trends Biochem Sci ; 48(2): 119-141, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36150954

RESUMEN

Riboswitches are structured noncoding RNA domains used by many bacteria to monitor the concentrations of target ligands and regulate gene expression accordingly. In the past 20 years over 55 distinct classes of natural riboswitches have been discovered that selectively sense small molecules or elemental ions, and thousands more are predicted to exist. Evidence suggests that some riboswitches might be direct descendants of the RNA-based sensors and switches that were likely present in ancient organisms before the evolutionary emergence of proteins. We provide an overview of the current state of riboswitch research, focusing primarily on the discovery of riboswitches, and speculate on the major challenges facing researchers in the field.


Asunto(s)
Riboswitch , ARN , Bacterias/genética , ARN no Traducido , Evolución Biológica
2.
Proc Natl Acad Sci U S A ; 121(6): e2318008121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38306478

RESUMEN

Several structured noncoding RNAs in bacteria are essential contributors to fundamental cellular processes. Thus, discoveries of additional ncRNA classes provide opportunities to uncover and explore biochemical mechanisms relevant to other major and potentially ancient processes. A candidate structured ncRNA named the "raiA motif" has been found via bioinformatic analyses in over 2,500 bacterial species. The gene coding for the RNA typically resides between the raiA and comFC genes of many species of Bacillota and Actinomycetota. Structural probing of the raiA motif RNA from the Gram-positive anaerobe Clostridium acetobutylicum confirms key features of its sophisticated secondary structure model. Expression analysis of raiA motif RNA reveals that the RNA is constitutively produced but reaches peak abundance during the transition from exponential growth to stationary phase. The raiA motif RNA becomes the fourth most abundant RNA in C. acetobutylicum, excluding ribosomal RNAs and transfer RNAs. Genetic disruption of the raiA motif RNA causes cells to exhibit substantially decreased spore formation and diminished ability to aggregate. Restoration of normal cellular function in this knock-out strain is achieved by expression of a raiA motif gene from a plasmid. These results demonstrate that raiA motif RNAs normally participate in major cell differentiation processes by operating as a trans-acting factor.


Asunto(s)
Clostridium acetobutylicum , Clostridium acetobutylicum/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , ARN/metabolismo , Bacterias/genética , ARN Ribosómico/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo
3.
Nucleic Acids Res ; 52(9): 5152-5165, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647067

RESUMEN

Structured noncoding RNAs (ncRNAs) contribute to many important cellular processes involving chemical catalysis, molecular recognition and gene regulation. Few ncRNA classes are broadly distributed among organisms from all three domains of life, but the list of rarer classes that exhibit surprisingly diverse functions is growing. We previously developed a computational pipeline that enables the near-comprehensive identification of structured ncRNAs expressed from individual bacterial genomes. The regions between protein coding genes are first sorted based on length and the fraction of guanosine and cytidine nucleotides. Long, GC-rich intergenic regions are then examined for sequence and structural similarity to other bacterial genomes. Herein, we describe the implementation of this pipeline on 50 bacterial genomes from varied phyla. More than 4700 candidate intergenic regions with the desired characteristics were identified, which yielded 44 novel riboswitch candidates and numerous other putative ncRNA motifs. Although experimental validation studies have yet to be conducted, this rate of riboswitch candidate discovery is consistent with predictions that many hundreds of novel riboswitch classes remain to be discovered among the bacterial species whose genomes have already been sequenced. Thus, many thousands of additional novel ncRNA classes likely remain to be discovered in the bacterial domain of life.


Asunto(s)
Genoma Bacteriano , ARN Bacteriano , ARN no Traducido , ADN Intergénico/genética , Genoma Bacteriano/genética , Genómica/métodos , Riboswitch/genética , ARN Bacteriano/genética , ARN Bacteriano/química , ARN no Traducido/genética , ARN no Traducido/clasificación , ARN no Traducido/química
4.
Proc Natl Acad Sci U S A ; 120(40): e2307854120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37748066

RESUMEN

Riboswitches rely on structured aptamer domains to selectively sense their target ligands and regulate gene expression. However, some riboswitch aptamers in bacteria carry mutations in their otherwise strictly conserved binding pockets that change ligand specificities. The aptamer domain of a riboswitch class originally found to selectively sense guanine forms a three-stem junction that has since been observed to exploit numerous alterations in its ligand-binding pocket. These rare variants have modified their ligand specificities to sense other purines or purine derivatives, including adenine, 2'-deoxyguanosine (three classes), and xanthine. Herein, we report the characteristics of a rare variant that is narrowly distributed in the Paenibacillaceae family of bacteria. Known representatives are always associated with genes encoding 8-oxoguanine deaminase. As predicted from this gene association, these variant riboswitches tightly bind 8-oxoguanine (8-oxoG), strongly discriminate against other purine derivatives, and function as genetic "ON" switches. Following exposure of cells to certain oxidative stresses, a representative 8-oxoG riboswitch activates gene expression, likely caused by the accumulation of 8-oxoG due to oxidative damage to G nucleobases in DNA, RNA, and the nucleotide pool. Furthermore, an engineered version of the variant aptamer was prepared that exhibits specificity for 8-oxoadenine, further demonstrating that RNA aptamers can acquire mutations that expand their ability to detect and respond to oxidative damage.


Asunto(s)
Aptámeros de Nucleótidos , Riboswitch , Riboswitch/genética , Ligandos , Conformación de Ácido Nucleico , Guanina/química , Xantina , Desoxiguanosina/química , Bacterias/metabolismo , Estrés Oxidativo/genética , Aptámeros de Nucleótidos/química
5.
Mol Cell ; 65(2): 220-230, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-27989440

RESUMEN

The guanidyl moiety is a component of fundamental metabolites, including the amino acid arginine, the energy carrier creatine, and the nucleobase guanine. Curiously, reports regarding the importance of free guanidine in biology are sparse, and no biological receptors that specifically recognize this compound have been previously identified. We report that many members of the ykkC motif RNA, the longest unresolved riboswitch candidate, naturally sense and respond to guanidine. This RNA is found throughout much of the bacterial domain of life, where it commonly controls the expression of proteins annotated as urea carboxylases and multidrug efflux pumps. Our analyses reveal that these proteins likely function as guanidine carboxylases and guanidine transporters, respectively. Furthermore, we demonstrate that bacteria are capable of endogenously producing guanidine. These and related findings demonstrate that free guanidine is a biologically relevant compound, and several gene families that can alleviate guanidine toxicity exist.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Ligasas de Carbono-Nitrógeno/metabolismo , Guanidina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Riboswitch , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/genética , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Conformación de Ácido Nucleico , Motivos de Nucleótidos , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Mensajero/química , ARN Mensajero/genética , Especificidad por Sustrato
6.
Nucleic Acids Res ; 51(2): 966-981, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36617976

RESUMEN

Over the past three decades, researchers have found that some engineered aptamers can be made to work well in test tubes but that these same aptamers might fail to function in cells. To help address this problem, we developed the 'Graftamer' approach, an experimental platform that exploits the architecture of a natural riboswitch to enhance in vitro aptamer selection and accelerate in vivo testing. Starting with combinatorial RNA pools that contain structural features of a guanine riboswitch aptamer interspersed with regions of random sequence, we performed multiplexed in vitro selection with a collection of small molecules. This effort yielded aptamers for quinine, guanine, and caffeine that appear to maintain structural features of the natural guanine riboswitch aptamer. Quinine and caffeine aptamers were each grafted onto a natural guanine riboswitch expression platform and reporter gene expression was monitored to determine that these aptamers function in cells. Additionally, we determined the secondary structure features and survival mechanism of a class of RNA sequences that evade the intended selection strategy, providing insight into improving this approach for future efforts. These results demonstrate that the Graftamer strategy described herein represents a convenient and straightforward approach to develop aptamers and validate their in vivo function.


Asunto(s)
Aptámeros de Nucleótidos , Ingeniería Genética , Riboswitch , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/química , Cafeína , Guanina , Ligandos , Conformación de Ácido Nucleico , Quinina , Riboswitch/genética , Ingeniería Genética/métodos
7.
Proc Natl Acad Sci U S A ; 119(22): e2120246119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35622895

RESUMEN

The aptamer portions of previously reported riboswitch classes that sense guanine, adenine, or 2'-deoxyguanosine are formed by a highly similar three-stem junction with distinct nucleotide sequences in the regions joining the stems. The nucleotides in these joining regions form the major features of the selective ligand-binding pocket for each aptamer. Previously, we reported the existence of additional, rare variants of the predominant guanine-sensing riboswitch class that carry nucleotide differences in the ligand-binding pocket, suggesting that these RNAs have further diversified their structures and functions. Herein, we report the discovery and analysis of three naturally occurring variants of guanine riboswitches that are narrowly distributed across Firmicutes. These RNAs were identified using comparative sequence analysis methods, which also revealed that some of the gene associations for these variants are atypical for guanine riboswitches or their previously known natural variants. Binding assays demonstrate that the newfound variant riboswitch representatives recognize xanthine, guanine, or 2'-deoxyguanosine, with the guanine class exhibiting greater discrimination against related purines than the more common guanine riboswitch class reported previously. These three additional variant classes, together with the four previously discovered riboswitch classes that employ the same three-stem junction architecture, reveal how a simple structural framework can be diversified to expand the range of purine-based ligands sensed by RNA.


Asunto(s)
Desoxiguanosina , Firmicutes , Guanina , Riboswitch , Xantina , Desoxiguanosina/metabolismo , Firmicutes/genética , Firmicutes/metabolismo , Guanina/metabolismo , Ligandos , Conformación de Ácido Nucleico , Riboswitch/genética , Riboswitch/fisiología , Xantina/metabolismo
8.
Annu Rev Biochem ; 78: 305-34, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19298181

RESUMEN

The cellular concentrations of certain metabolites are assiduously monitored to achieve appropriate levels of gene expression. Although proteins have long been known to act as sensors in this capacity, metabolite-binding RNAs, or riboswitches, also play an important role. More than 20 distinct classes of riboswitches have been identified to date, and insights to the molecular recognition strategies of a significant subset of these have been provided by detailed structural studies. This diverse set of metabolite-sensing RNAs is found to exploit a variety of distinct mechanisms to regulate genes that are fundamental to metabolism.


Asunto(s)
ARN no Traducido/química , ARN no Traducido/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Células Eucariotas/metabolismo , Evolución Molecular , Conformación de Ácido Nucleico , ARN no Traducido/genética
9.
Mol Microbiol ; 120(3): 324-340, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37469248

RESUMEN

OLE RNA is a ~600-nucleotide noncoding RNA present in many Gram-positive bacteria that thrive mostly in extreme environments, including elevated temperature, salt, and pH conditions. The precise biochemical functions of this highly conserved RNA remain unknown, but it forms a ribonucleoprotein (RNP) complex that localizes to cell membranes. Genetic disruption of the RNA or its essential protein partners causes reduced cell growth under various stress conditions. These phenotypes include sensitivity to short-chain alcohols, cold intolerance, reduced growth on sub-optimal carbon sources, and intolerance of even modest concentrations of Mg2+ . Thus, many bacterial species appear to employ OLE RNA as a component of an intricate RNP apparatus to monitor fundamental cellular processes and make physiological and metabolic adaptations. Herein we hypothesize that the OLE RNP complex is functionally equivalent to the eukaryotic TOR complexes, which integrate signals from various diverse pathways to coordinate processes central to cell growth, replication, and survival.


Asunto(s)
Extremófilos , ARN , Extremófilos/metabolismo , Bacterias/genética , Bacterias/metabolismo , ARN no Traducido/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
10.
Nat Chem Biol ; 18(8): 878-885, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35879547

RESUMEN

Organisms presumably have mechanisms to monitor and physiologically adapt to changes in cellular Na+ concentrations. Only a single bacterial protein has previously been demonstrated to selectively sense Na+ and regulate gene expression. Here we report a riboswitch class, previously called the 'DUF1646 motif', whose members selectively sense Na+ and regulate the expression of genes relevant to sodium biology. Many proteins encoded by Na+-riboswitch-regulated genes are annotated as metal ion transporters, whereas others are involved in mitigating osmotic stress or harnessing Na+ gradients for ATP production. Na+ riboswitches exhibit dissociation constants in the low mM range, and strongly reject all other alkali and alkaline earth ions. Likewise, only Na+ triggers riboswitch-mediated transcription and gene expression changes. These findings reveal that some bacteria use Na+ riboswitches to monitor, adjust and exploit Na+ concentrations and gradients, and in some instances collaborate with c-di-AMP riboswitches to coordinate gene expression during osmotic stress.


Asunto(s)
Fenómenos Fisiológicos , Riboswitch , Bacterias/genética , Bacterias/metabolismo , Regulación Bacteriana de la Expresión Génica , Iones/metabolismo , Conformación de Ácido Nucleico , ARN Bacteriano/genética , Sodio/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33619097

RESUMEN

The OLE (ornate, large, and extremophilic) RNA class is one of the most complex and well-conserved bacterial noncoding RNAs known to exist. This RNA is known to be important for bacterial responses to stress caused by short-chain alcohols, cold, and elevated Mg2+ concentrations. These biological functions have been shown to require the formation of a ribonucleoprotein (RNP) complex including at least two protein partners: OLE-associated protein A (OapA) and OLE-associated protein B (OapB). OapB directly binds OLE RNA with high-affinity and specificity and is believed to assist in assembling the functional OLE RNP complex. To provide the atomic details of OapB-OLE RNA interaction and to potentially reveal previously uncharacterized protein-RNA interfaces, we determined the structure of OapB from Bacillus halodurans alone and in complex with an OLE RNA fragment at resolutions of 1.0 Å and 2.0 Å, respectively. The structure of OapB exhibits a K-shaped overall architecture wherein its conserved KOW motif and additional unique structural elements of OapB form a bipartite RNA-binding surface that docks to the P13 hairpin and P12.2 helix of OLE RNA. These high-resolution structures elucidate the molecular contacts used by OapB to form a stable RNP complex and explain the high conservation of sequences and structural features at the OapB-OLE RNA-binding interface. These findings provide insight into the role of OapB in the assembly and biological function of OLE RNP complex and can guide the exploration of additional possible OLE RNA-binding interactions present in OapB.


Asunto(s)
Bacillus/química , Proteínas Bacterianas/química , ARN Bacteriano/química , ARN no Traducido/química , Ribonucleoproteínas/química , Secuencia de Aminoácidos , Bacillus/genética , Bacillus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Regulación Bacteriana de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
12.
J Biol Chem ; 298(12): 102674, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36336078

RESUMEN

Ornate, large, extremophilic (OLE) RNAs represent a class of noncoding RNAs prevalent in Gram-positive, extremophilic/anaerobic bacterial species. OLE RNAs (∼600 nt), whose precise biochemical functions remain mysterious, form an intricate secondary structure interspersed with regions of highly conserved nucleotides. In the alkali-halophilic bacterium Bacillus halodurans, OLE RNA is a component of a ribonucleoprotein (RNP) complex involving at least two proteins named OapA and OapB, but additional components may exist that could point to functional roles for the RNA. Disruption of the genes for either OLE RNA, OapA, or OapB result in the inability of cells to overcome cold, alcohol, or Mg2+ stresses. In the current study, we used in vivo crosslinking followed by OLE RNA isolation to identify the protein YbxF as a potential additional partner in the OLE RNP complex. Notably, a mutation in the gene for this same protein was also reported to be present in a strain wherein the complex is nonfunctional. The B. halodurans YbxF (herein renamed OapC) is homologous to a bacterial protein earlier demonstrated to bind kink turn (k-turn) RNA structural motifs. In vitro RNA-protein binding assays reveal that OLE RNA forms a previously unrecognized k-turn that serves as the natural binding site for YbxF/OapC. Moreover, B. halodurans cells carrying OLE RNAs with disruptive mutations in the k-turn exhibit phenotypes identical to cells lacking functional OLE RNP complexes. These findings reveal that the YbxF/OapC protein of B. halodurans is important for the formation of a functional OLE RNP complex.


Asunto(s)
Proteínas Bacterianas , ARN , Proteínas Bacterianas/metabolismo , Sitios de Unión , Motivos de Nucleótidos , ARN no Traducido/genética
13.
RNA ; 27(1): 99-105, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33087526

RESUMEN

A bacterial noncoding RNA motif almost exclusively associated with pnuC genes was uncovered using comparative sequence analysis. Some PnuC proteins are known to transport nicotinamide riboside (NR), which is a component of the ubiquitous and abundant enzyme cofactor nicotinamide adenine dinucleotide (NAD+). Thus, we speculated that the newly found "pnuC motif" RNAs might function as aptamers for a novel class of NAD+-sensing riboswitches. RNA constructs that encompass the conserved nucleotides and secondary structure features that define the motif indeed selectively bind NAD+, nicotinamide mononucleotide (NMN), and NR. Mutations that disrupt strictly conserved nucleotides of the aptamer also disrupt ligand binding. These bioinformatic and biochemical findings indicate that pnuC motif RNAs are likely members of a second riboswitch class that regulates gene expression in response to NAD+ binding.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Coenzimas/química , NAD/química , Niacinamida/análogos & derivados , Compuestos de Piridinio/química , Riboswitch , Streptococcus/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Proteínas Portadoras/metabolismo , Coenzimas/metabolismo , Biología Computacional/métodos , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , Lactobacillus acidophilus/genética , Lactobacillus acidophilus/metabolismo , NAD/metabolismo , Niacinamida/química , Niacinamida/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Compuestos de Piridinio/metabolismo , Shewanella/genética , Shewanella/metabolismo , Streptococcus/metabolismo
14.
Bioinformatics ; 38(2): 533-535, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34524415

RESUMEN

SUMMARY: Recent efforts to identify novel bacterial structured noncoding RNA (ncRNA) motifs through searching long, GC-rich intergenic regions (IGRs) have revealed several new classes, including the recently validated HMP-PP riboswitch. The DIMPL (Discovery of Intergenic Motifs PipeLine) discovery pipeline described herein enables rapid extraction and selection of bacterial IGRs that are enriched for structured ncRNAs. Moreover, DIMPL automates the subsequent computational steps necessary for their functional identification. AVAILABILITY AND IMPLEMENTATION: The DIMPL pipeline is freely available as a Docker image with an accompanying set of Jupyter notebooks. Full instructions for download and use are available at https://github.com/breakerlab/dimpl. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Bacterias , Riboswitch , Motivos de Nucleótidos , Bacterias/genética , ARN no Traducido/genética , Biología Computacional/métodos
15.
Anal Biochem ; 666: 115047, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36682579

RESUMEN

Due to the emergence of multidrug resistant pathogens, it is imperative to identify new targets for antibiotic drug discovery. The S-adenosylhomocysteine (SAH) nucleosidase enzyme is a promising target for antimicrobial drug development due to its critical functions in multiple bacterial processes including recycling of toxic byproducts of S-adenosylmethionine (SAM)-mediated reactions and producing the precursor of the universal quorum sensing signal, autoinducer-2 (AI-2). Riboswitches are structured RNA elements typically used by bacteria to precisely monitor and respond to changes in essential bacterial processes, including metabolism. Natural riboswitches fused to a reporter gene can be exploited to detect changes in metabolism or in physiological signaling. We performed a high-throughput screen (HTS) using an SAH-riboswitch controlled ß-galactosidase reporter gene in Escherichia coli to discover small molecules that inhibit SAH recycling. We demonstrate that the assay strategy using SAH riboswitches to detect the effects of SAH nucleosidase inhibitors can quickly identify compounds that penetrate the barriers of Gram-negative bacterial cells and perturb pathways involving SAH.


Asunto(s)
Riboswitch , S-Adenosilmetionina/metabolismo , ARN/genética , Bacterias/genética , N-Glicosil Hidrolasas/genética , N-Glicosil Hidrolasas/metabolismo
16.
Nat Chem Biol ; 17(4): 375-382, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33495645

RESUMEN

The RNA World theory encompasses the hypothesis that sophisticated ribozymes and riboswitches were the primary drivers of metabolic processes in ancient organisms. Several types of catalytic RNAs and many classes of ligand-sensing RNA switches still exist in modern cells. Curiously, allosteric ribozymes formed by the merger of RNA enzyme and RNA switch components are largely absent in today's biological systems. This is true despite the striking abundances of various classes of both self-cleaving ribozymes and riboswitch aptamers. Here we present the known types of ligand-controlled ribozymes and riboswitches and discuss the possible reasons why fused ribozyme-aptamer constructs have been disfavored through evolution.


Asunto(s)
Regulación Alostérica/genética , ARN Catalítico/metabolismo , Riboswitch/fisiología , Regulación Alostérica/fisiología , Animales , Aptámeros de Nucleótidos/genética , Evolución Molecular , Ingeniería Genética , Humanos , Conformación de Ácido Nucleico , ARN/genética
18.
Mol Cell ; 57(2): 317-28, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25616067

RESUMEN

Over 30 years ago, ZTP (5-aminoimidazole-4-carboxamide riboside 5'-triphosphate), a modified purine biosynthetic intermediate, was proposed to signal 10-formyl-tetrahydrofolate (10f-THF) deficiency in bacteria. However, the mechanisms by which this putative alarmone or its precursor ZMP (5-aminoimidazole-4-carboxamide ribonucleotide, also known as AICAR) brings about any metabolic changes remain unexplained. Herein, we report the existence of a widespread riboswitch class that is most commonly associated with genes related to de novo purine biosynthesis and one-carbon metabolism. Biochemical data confirm that members of this riboswitch class selectively bind ZMP and ZTP with nanomolar affinity while strongly rejecting numerous natural analogs. Indeed, increases in the ZMP/ZTP pool, caused by folate stress in bacterial cells, trigger changes in the expression of a reporter gene fused to representative ZTP riboswitches in vivo. The wide distribution of this riboswitch class suggests that ZMP/ZTP signaling is important for species in numerous bacterial lineages.


Asunto(s)
Purinas/biosíntesis , ARN Bacteriano/genética , Riboswitch , Secuencia de Bases , Clostridium acetobutylicum/genética , Secuencia Conservada , Regulación Bacteriana de la Expresión Génica , Secuencias Invertidas Repetidas , Datos de Secuencia Molecular
19.
Mol Cell ; 57(6): 1088-1098, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25794617

RESUMEN

Bacteria regularly encounter widely varying metal concentrations in their surrounding environment. As metals become depleted or, conversely, accrue to toxicity, microbes will activate cellular responses that act to maintain metal homeostasis. A suite of metal-sensing regulatory ("metalloregulatory") proteins orchestrate these responses by allosterically coupling the selective binding of target metals to the activity of DNA-binding domains. However, we report here the discovery, validation, and structural details of a widespread class of riboswitch RNAs, whose members selectively and tightly bind the low-abundance transition metals, Ni(2+) and Co(2+). These riboswitches bind metal cooperatively, and with affinities in the low micromolar range. The structure of a Co(2+)-bound RNA reveals a network of molecular contacts that explains how it achieves cooperative binding between adjacent sites. These findings reveal that bacteria have evolved to utilize highly selective metalloregulatory riboswitches, in addition to metalloregulatory proteins, for detecting and responding to toxic levels of heavy metals.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Cobalto/metabolismo , Níquel/metabolismo , ARN Bacteriano/química , ARN Bacteriano/metabolismo , Riboswitch/fisiología , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Proteínas de Transporte de Catión/genética , Clostridium/genética , Clostridium/metabolismo , Secuencia Conservada , Cristalografía por Rayos X , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Conformación de Ácido Nucleico
20.
Biochemistry ; 61(3): 137-149, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35068140

RESUMEN

More than 55 distinct classes of riboswitches that respond to small metabolites or elemental ions have been experimentally validated to date. The ligands sensed by these riboswitches are biased in favor of fundamental compounds or ions that are likely to have been relevant to ancient forms of life, including those that might have populated the "RNA World", which is a proposed biochemical era that predates the evolutionary emergence of DNA and proteins. In the following text, I discuss the various types of ligands sensed by some of the most common riboswitches present in modern bacterial cells and consider implications for ancient biological processes centered on the proven capabilities of these RNA-based sensors. Although most major biochemical aspects of metabolism are represented by known riboswitch classes, there are striking sensory gaps in some key areas. These gaps could reveal weaknesses in the performance capabilities of RNA that might have hampered RNA World evolution, or these could highlight opportunities to discover additional riboswitch classes that sense essential metabolites.


Asunto(s)
Ligandos , ARN Bacteriano/metabolismo , Riboswitch , Aptámeros de Nucleótidos/metabolismo , Sitios de Unión , Glutamina/metabolismo , Glicina/metabolismo , Lisina/metabolismo , ARN Bacteriano/química , S-Adenosilmetionina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA