Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(39): 24534-24544, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32929005

RESUMEN

Auditory hair cells receive olivocochlear efferent innervation, which refines tonotopic mapping, improves sound discrimination, and mitigates acoustic trauma. The olivocochlear synapse involves α9α10 nicotinic acetylcholine receptors (nAChRs), which assemble in hair cells only coincident with cholinergic innervation and do not express in recombinant mammalian cell lines. Here, genome-wide screening determined that assembly and surface expression of α9α10 require ligand binding. Ion channel function additionally demands an auxiliary subunit, which can be transmembrane inner ear (TMIE) or TMEM132e. Both of these single-pass transmembrane proteins are enriched in hair cells and underlie nonsyndromic human deafness. Inner hair cells from TMIE mutant mice show altered postsynaptic α9α10 function and retain α9α10-mediated transmission beyond the second postnatal week associated with abnormally persistent cholinergic innervation. Collectively, this study provides a mechanism to link cholinergic input with α9α10 assembly, identifies unexpected functions for human deafness genes TMIE/TMEM132e, and enables drug discovery for this elusive nAChR implicated in prevalent auditory disorders.


Asunto(s)
Sordera/metabolismo , Células Ciliadas Auditivas/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Cóclea/metabolismo , Sordera/genética , Humanos , Ligandos , Proteínas de la Membrana/genética , Ratones , Unión Proteica , Receptores Nicotínicos/genética , Sinapsis/metabolismo
2.
J Pharmacol Exp Ther ; 369(3): 345-363, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30910921

RESUMEN

Nonselective glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists are efficacious in chronic pain but have significant tolerability issues, likely arising from the ubiquitous expression of AMPA receptors in the central nervous system (CNS). Recently, LY3130481 has been shown to selectively block AMPA receptors coassembled with the auxiliary protein, transmembrane AMPA receptor regulatory protein (TARP) γ8, which is highly expressed in the hippocampus but also in pain pathways, including anterior cingulate (ACC) and somatosensory cortices and the spinal cord, suggesting that selective blockade of γ8/AMPA receptors may suppress nociceptive signaling with fewer CNS side effects. The potency of LY3130481 on recombinant γ8-containing AMPA receptors was modulated by coexpression with other TARPs; γ2 subunits affected activity more than γ3 subunits. Consistent with these findings, LY3130481 had decreasing potency on receptors from rat hippocampal, cortical, spinal cord, and cerebellar neurons that was replicated in tissue from human brain. LY3130481 partially suppressed, whereas the nonselective AMPA antagonist GYKI53784 completely blocked, AMPA receptor-dependent excitatory postsynaptic potentials in ACC and spinal neurons in vitro. Similarly, LY3130481 attenuated short-term synaptic plasticity in spinal sensory neurons in vivo in response to stimulation of peripheral afferents. LY3130481 also significantly reduced nocifensive behaviors after intraplantar formalin that was correlated with occupancy of CNS γ8-containing AMPA receptors. In addition, LY3130481 dose-dependently attenuated established gait impairment after joint damage and tactile allodynia after spinal nerve ligation, all in the absence of motor side effects. Collectively, these data demonstrate that LY3130481 can suppress excitatory synaptic transmission and plasticity in pain pathways containing γ8/AMPA receptors and significantly reduce nocifensive behaviors, suggesting a novel, effective, and safer therapy for chronic pain conditions.


Asunto(s)
Canales de Calcio/metabolismo , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/metabolismo , Terapia Molecular Dirigida , Receptores AMPA/metabolismo , Animales , Benzotiazoles/farmacología , Benzotiazoles/uso terapéutico , Dolor Crónico/fisiopatología , Masculino , Plasticidad Neuronal/efectos de los fármacos , Nocicepción/efectos de los fármacos , Pirazoles/farmacología , Pirazoles/uso terapéutico , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos , Distribución Tisular
3.
J Neurosci ; 32(44): 15296-308, 2012 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-23115168

RESUMEN

Cerebellar motor coordination and cerebellar Purkinje cell synaptic function require metabotropic glutamate receptor 1 (mGluR1, Grm1). We used an unbiased proteomic approach to identify protein partners for mGluR1 in cerebellum and discovered glutamate receptor δ2 (GluRδ2, Grid2, GluΔ2) and protein kinase Cγ (PKCγ) as major interactors. We also found canonical transient receptor potential 3 (TRPC3), which is also needed for mGluR1-dependent slow EPSCs and motor coordination and associates with mGluR1, GluRδ2, and PKCγ. Mutation of GluRδ2 changes subcellular fractionation of mGluR1 and TRPC3 to increase their surface expression. Fitting with this, mGluR1-evoked inward currents are increased in GluRδ2 mutant mice. Moreover, loss of GluRδ2 disrupts the time course of mGluR1-dependent synaptic transmission at parallel fiber-Purkinje cells synapses. Thus, GluRδ2 is part of the mGluR1 signaling complex needed for cerebellar synaptic function and motor coordination, explaining the shared cerebellar motor phenotype that manifests in mutants of the mGluR1 and GluRδ2 signaling pathways.


Asunto(s)
Neuronas/fisiología , Proteína Quinasa C/fisiología , Células de Purkinje/fisiología , Receptores de Glutamato/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Transmisión Sináptica/fisiología , Canales Catiónicos TRPC/fisiología , Animales , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Mutación/fisiología , Técnicas de Placa-Clamp , Fenotipo , Receptores de Superficie Celular/fisiología , Receptores de Glutamato/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Solubilidad , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/fisiología
4.
Curr Opin Cell Biol ; 18(2): 223-7, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16504495

RESUMEN

Neurotransmission requires proper organization of synaptic vesicle pools and rapid release of vesicle contents upon presynaptic depolarization. Genetic studies have begun to reveal a critical role for scaffolding proteins in such processes. Mutations in genes encoding components of the highly conserved MALS/CASK/Mint-1 complex cause presynaptic defects. In all three mutants, neurotransmitter release is reduced in a manner consistent with aberrant vesicle cycling to the readily releasable pool. Recently, liprin-alpha proteins, which define active zone size and morphology, were found to associate with MALS/CASK, suggesting that this complex links the presynaptic release machinery to the active zone, thereby regulating neurotransmitter release.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas de la Membrana/metabolismo , Terminales Presinápticos/fisiología , Transmisión Sináptica/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Guanilato-Quinasas , Humanos , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Terminales Presinápticos/metabolismo
5.
J Neurosci ; 31(18): 6928-38, 2011 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-21543622

RESUMEN

Neuronal AMPA receptor complexes comprise a tetramer of GluA pore-forming subunits as well as accessory components, including transmembrane AMPA receptor regulatory proteins (TARPs) and cornichon-2/3 (CNIH-2/3). The mechanisms that control AMPA receptor complex assembly remain unclear. AMPA receptor responses in neurons differ from those in cell lines transfected with GluA plus TARPs γ-8 or γ-7, which show unusual resensitization kinetics and non-native AMPA receptor pharmacologies. Using tandem GluA/TARP constructs to constrain stoichiometry, we show here that these peculiar kinetic and pharmacological signatures occur in channels with four TARP subunits per complex. Reducing the number of TARPs per complex produces AMPA receptors with neuron-like kinetics and pharmacologies, suggesting a neuronal mechanism controls GluA/TARP assembly. Importantly, we find that coexpression of CNIH-2 with GluA/TARP complexes reduces TARP stoichiometry within AMPA receptors. In both rat and mouse hippocampal neurons, CNIH-2 also associates with AMPA receptors on the neuronal surface in a γ-8-dependent manner to dictate receptor pharmacology. In the cerebellum, however, CNIH-2 expressed in Purkinje neurons does not reach the neuronal surface. In concordance, stargazer Purkinje neurons, which express CNIH-2 and γ-7, display AMPA receptor kinetics/pharmacologies that can only be recapitulated recombinantly by a low γ-7/GluA stoichiometry. Together, these data suggest that CNIH-2 modulates neuronal AMPA receptor auxiliary subunit assembly by regulating the number of TARPs within an AMPA receptor complex to modulate receptor gating and pharmacology.


Asunto(s)
Activación del Canal Iónico/fisiología , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Subunidades de Proteína/metabolismo , Receptores AMPA/metabolismo , Análisis de Varianza , Animales , Membrana Celular/metabolismo , Células Cultivadas , Corteza Cerebelosa/citología , Corteza Cerebelosa/metabolismo , Electrofisiología , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Ratones , Neuronas/citología , Ratas , Ratas Wistar
6.
J Biol Chem ; 286(15): 13134-42, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21343286

RESUMEN

AMPA receptors mediate fast excitatory transmission in the brain. Neuronal AMPA receptors comprise GluA pore-forming principal subunits and can associate with multiple modulatory components, including transmembrane AMPA receptor regulatory proteins (TARPs) and CNIHs (cornichons). AMPA receptor potentiators and non-competitive antagonists represent potential targets for a variety of neuropsychiatric disorders. Previous studies showed that the AMPA receptor antagonist GYKI-53655 displaces binding of a potentiator from brain receptors but not from recombinant GluA subunits. Here, we asked whether AMPA receptor modulatory subunits might resolve this discrepancy. We find that the cerebellar TARP, stargazin (γ-2), enhances the binding affinity of the AMPA receptor potentiator [(3)H]-LY450295 and confers sensitivity to displacement by non-competitive antagonists. In cerebellar membranes from stargazer mice, [(3)H]-LY450295 binding is reduced and relatively resistant to displacement by non-competitive antagonists. Coexpression of AMPA receptors with CNIH-2, which is expressed in the hippocampus and at low levels in the cerebellar Purkinje neurons, confers partial sensitivity of [(3)H]-LY450295 potentiator binding to displacement by non-competitive antagonists. Autoradiography of [(3)H]-LY450295 binding to stargazer and γ-8-deficient mouse brain sections, demonstrates that TARPs regulate the pharmacology of allosteric AMPA potentiators and antagonists in the cerebellum and hippocampus, respectively. These studies demonstrate that accessory proteins define AMPA receptor pharmacology by functionally linking allosteric AMPA receptor potentiator and antagonist sites.


Asunto(s)
Benzodiazepinas/farmacología , Membrana Celular/metabolismo , Proteínas del Huevo/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Proteínas de la Membrana/metabolismo , Células de Purkinje/metabolismo , Receptores AMPA , Regulación Alostérica/genética , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Membrana Celular/genética , Proteínas del Huevo/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Ratones , Receptores AMPA/agonistas , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/genética , Receptores AMPA/metabolismo
7.
Eur J Neurosci ; 35(2): 182-94, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22211840

RESUMEN

Transmembrane AMPA receptor regulatory proteins (TARPs) are auxiliary subunits that modulate AMPA receptor trafficking, gating and pharmacology throughout the brain. Why cornichon-2 (CNIH-2), another AMPA receptor-associated protein, modulates AMPA receptor gating and pharmacology in hippocampal neurons but not cerebellar granule neurons remains unresolved. Here, we report that CNIH-2 differentially impacts Type-Ia (γ-2 or γ-3) vs. Type-Ib (γ-4 or γ-8) TARP-containing AMPA receptors. Specifically, with AMPA receptors comprising γ-2, the cerebellar-enriched TARP isoform, CNIH-2 decreases I(KA) /I(Glu) ratio and decreases cyclothiazide efficacy while having minimal impact on recovery from desensitization and deactivation kinetics. By contrast, with AMPA receptors comprising γ-8, the hippocampal-enriched TARP isoform, we find that CNIH-2 slows deactivation kinetics, increases cyclothiazide potency and occludes a novel AMPA receptor kinetic phenomenon, namely resensitization. Additionally, we find that CNIH-2 differentially modulates the glutamate off-kinetics of γ-8-containing, but not γ-2-containing, AMPA receptors in a manner dependent upon the duration of agonist application. Together, these data demonstrate that the modulation of AMPA receptors by CNIH-2 depends upon the TARP isoform composition within the receptor complex.


Asunto(s)
Encéfalo/metabolismo , Proteínas del Huevo/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Células HEK293 , Humanos , Activación del Canal Iónico/fisiología , Técnicas de Placa-Clamp , Isoformas de Proteínas/metabolismo , Transfección
8.
J Cell Biol ; 179(1): 151-64, 2007 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-17923534

RESUMEN

Kidney development and physiology require polarization of epithelia that line renal tubules. Genetic studies show that polarization of invertebrate epithelia requires the crumbs, partition-defective-3, and discs large complexes. These evolutionarily conserved protein complexes occur in mammalian kidney; however, their role in renal development remains poorly defined. Here, we find that mice lacking the small PDZ protein mammalian LIN-7c (MALS-3) have hypomorphic, cystic, and fibrotic kidneys. Proteomic analysis defines MALS-3 as the only known core component of both the crumbs and discs large cell polarity complexes. MALS-3 mediates stable assembly of the crumbs tight junction complex and the discs large basolateral complex, and these complexes are disrupted in renal epithelia from MALS-3 knockout mice. Interestingly, MALS-3 controls apico-basal polarity preferentially in epithelia derived from metanephric mesenchyme, and defects in kidney architecture owe solely to MALS expression in these epithelia. These studies demonstrate that defects in epithelial cell polarization can cause cystic and fibrotic renal disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Riñón/patología , Complejos Multiproteicos/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Secuencia de Aminoácidos , Animales , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/fisiología , Proteínas de Ciclo Celular , Células Epiteliales/metabolismo , Riñón/embriología , Riñón/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Organogénesis/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Uniones Estrechas/metabolismo , Uniones Estrechas/patología
9.
Nat Struct Mol Biol ; 14(2): 155-63, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17220895

RESUMEN

The postsynaptic density protein PSD-95 and related membrane-associated guanylate kinases are scaffolding proteins, whose modular interaction motifs organize protein complexes at cell junctions. The signature guanylate kinase domain (GK) contains elements of the protein's GMP-binding site but does not bind nucleotide. Instead, the GK domain has evolved from an enzyme to a protein-protein interaction motif. Here, we show that this canonical GMP-binding region interacts with microtubule-associated protein-1a (MAP1a) and we present a structural model. We determine the consensus GK-binding sequence in MAP1a and demonstrate that PSD-95 can use a similar interaction mode to bind diverse protein partners. Furthermore, we show that PSD-95 GK has adopted the conformational flexibility of the ancestral enzyme to bind its varied ligands, which suggests a mechanism of regulation.


Asunto(s)
Guanilato-Quinasas/química , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas de la Membrana/química , Proteínas Asociadas a Microtúbulos/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Secuencia Conservada , Homólogo 4 de la Proteína Discs Large , Glutatión Transferasa/química , Glutatión Transferasa/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Ratas , Proteínas Recombinantes de Fusión/química , Dominios Homologos src
10.
Neuron ; 55(6): 905-18, 2007 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-17880894

RESUMEN

A family of transmembrane AMPA receptor regulatory proteins (TARPs) profoundly affects the trafficking and gating of AMPA receptors (AMPARs). Although TARP subtypes are differentially expressed throughout the CNS, it is unclear whether this imparts functional diversity to AMPARs in distinct neuronal populations. Here, we examine the effects of each TARP subtype on the kinetics of AMPAR gating in heterologous cells and in neurons. We report a striking heterogeneity in the effects of TARP subtypes on AMPAR deactivation and desensitization, which we demonstrate controls the time course of synaptic transmission. In addition, we find that some TARP subtypes dramatically slow AMPAR activation kinetics. Synaptic AMPAR kinetics also depend on TARP expression level, suggesting a variable TARP/AMPAR stoichiometry. Analysis of quantal synaptic transmission in a TARP gamma-4 knockout (KO) mouse corroborates our expression data and demonstrates that TARP subtype-specific gating of AMPARs contributes to the kinetics of native AMPARs at central synapses.


Asunto(s)
Proteínas Nucleares/farmacología , Receptores AMPA/efectos de los fármacos , Sinapsis/efectos de los fármacos , Animales , Línea Celular , ADN Complementario/biosíntesis , ADN Complementario/genética , Interpretación Estadística de Datos , Relación Dosis-Respuesta a Droga , Electrofisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Espacio Extracelular/fisiología , Activación del Canal Iónico/efectos de los fármacos , Isomerismo , Cinética , Modelos Estadísticos , Neuronas/fisiología , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Plásmidos/genética , Ratas , Receptores AMPA/agonistas , Receptores AMPA/fisiología , Sinapsis/fisiología
11.
Curr Opin Cell Biol ; 16(2): 134-9, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15196555

RESUMEN

Glutamate receptors are the primary mediators of excitatory synaptic transmission in the mammalian central nervous system. Activity-dependent changes in the number of postsynaptic glutamate receptors underlie aspects of synaptic plasticity and provide a mechanism for information storage in the brain. Recent work shows that receptor exit from the endoplasmic reticulum represents a critical regulatory step in glutamate receptor trafficking to the neuronal cell surface.


Asunto(s)
Retículo Endoplásmico/metabolismo , Neuronas/metabolismo , Receptores de Glutamato/metabolismo , Membranas Sinápticas/metabolismo , Animales , Humanos , Plasticidad Neuronal/fisiología , Transporte de Proteínas/fisiología , Transmisión Sináptica/fisiología
12.
J Cell Biol ; 174(3): 369-77, 2006 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-16864653

RESUMEN

Lipid modifications mediate the subcellular localization and biological activity of many proteins, including endothelial nitric oxide synthase (eNOS). This enzyme resides on the cytoplasmic aspect of the Golgi apparatus and in caveolae and is dually acylated by both N-myristoylation and S-palmitoylation. Palmitoylation-deficient mutants of eNOS release less nitric oxide (NO). We identify enzymes that palmitoylate eNOS in vivo. Transfection of human embryonic kidney 293 cells with the complementary DNA (cDNA) for eNOS and 23 cDNA clones encoding the Asp-His-His-Cys motif (DHHC) palmitoyl transferase family members showed that five clones (2, 3, 7, 8, and 21) enhanced incorporation of [3H]-palmitate into eNOS. Human endothelial cells express all five of these enzymes, which colocalize with eNOS in the Golgi and plasma membrane and interact with eNOS. Importantly, inhibition of DHHC-21 palmitoyl transferase, but not DHHC-3, in human endothelial cells reduces eNOS palmitoylation, eNOS targeting, and stimulated NO production. Collectively, our data describe five new Golgi-targeted DHHC enzymes in human endothelial cells and suggest a regulatory role of DHHC-21 in governing eNOS localization and function.


Asunto(s)
Aciltransferasas/metabolismo , Aparato de Golgi/enzimología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ácido Palmítico/metabolismo , Acilación , Secuencias de Aminoácidos , Animales , Células COS , Membrana Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Células Endoteliales/citología , Células Endoteliales/enzimología , Humanos , Inmunoprecipitación , Óxido Nítrico/metabolismo , Unión Proteica , Transporte de Proteínas
13.
Nature ; 435(7045): 1052-8, 2005 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-15858532

RESUMEN

AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors mediate fast excitatory synaptic transmission in the brain. These ion channels rapidly deactivate and desensitize, which determine the time course of synaptic transmission. Here, we find that the AMPA receptor interacting protein, stargazin, not only mediates AMPA receptor trafficking but also shapes synaptic responses by slowing channel deactivation and desensitization. The cytoplasmic tail of stargazin determines receptor trafficking, whereas the ectodomain controls channel properties. Stargazin alters AMPA receptor kinetics by increasing the rate of channel opening. Disrupting the interaction of stargazin ectodomain with hippocampal AMPA receptors alters the amplitude and shape of synaptic responses, establishing a crucial function for stargazin in controlling the efficacy of synaptic transmission in the brain.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/metabolismo , Receptores AMPA/metabolismo , Animales , Canales de Calcio/genética , Conductividad Eléctrica , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Técnicas In Vitro , Oocitos/metabolismo , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína , Transporte de Proteínas , Ratas , Receptores AMPA/genética , Transmisión Sináptica/efectos de los fármacos , Xenopus laevis
14.
Science ; 373(6556)2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34385370

RESUMEN

The neurotransmitter acetylcholine (ACh) acts in part through a family of nicotinic ACh receptors (nAChRs), which mediate diverse physiological processes including muscle contraction, neurotransmission, and sensory transduction. Pharmacologically, nAChRs are responsible for tobacco addiction and are targeted by medicines for hypertension and dementia. Nicotinic AChRs were the first ion channels to be isolated. Recent studies have identified molecules that control nAChR biogenesis, trafficking, and function. These nAChR accessories include protein and chemical chaperones as well as auxiliary subunits. Whereas some factors act on many nAChRs, others are receptor specific. Discovery of these regulatory mechanisms is transforming nAChR research in cells and tissues ranging from central neurons to spinal ganglia to cochlear hair cells. Nicotinic AChR-specific accessories also enable drug discovery on high-confidence targets for psychiatric, neurological, and auditory disorders.


Asunto(s)
Chaperonas Moleculares/metabolismo , Neuronas/metabolismo , Proteínas/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Membrana Celular/metabolismo , Descubrimiento de Drogas , Retículo Endoplásmico/metabolismo , Humanos , Ligandos , Músculo Esquelético/metabolismo , Neurofarmacología , Nicotina/metabolismo , Subunidades de Proteína/metabolismo , Receptores Nicotínicos/química
15.
Neuron ; 52(2): 307-20, 2006 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17046693

RESUMEN

Trafficking of AMPA receptors (AMPA-Rs) to and from synapses controls the strength of excitatory synaptic transmission. However, proteins that cluster AMPA-Rs at synapses remain poorly understood. Here we show that PSD-95-like membrane-associated guanylate kinases (PSD-MAGUKs) mediate this synaptic targeting, and we uncover a remarkable functional redundancy within this protein family. By manipulating endogenous neuronal PSD-MAGUK levels, we find that both PSD-95 and PSD-93 independently mediate AMPA-R targeting at mature synapses. We also reveal unanticipated synapse heterogeneity as loss of either PSD-95 or PSD-93 silences largely nonoverlapping populations of excitatory synapses. In adult PSD-95 and PSD-93 double knockout animals, SAP-102 is upregulated and compensates for the loss of synaptic AMPA-Rs. At immature synapses, PSD-95 and PSD-93 play little role in synaptic AMPA-R clustering; instead, SAP-102 dominates. These studies establish a PSD-MAGUK-specific regulation of AMPA-R synaptic expression that establishes and maintains glutamatergic synaptic transmission in the mammalian central nervous system.


Asunto(s)
Diferenciación Celular/fisiología , Espinas Dendríticas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Espinas Dendríticas/ultraestructura , Homólogo 4 de la Proteína Discs Large , Regulación hacia Abajo/fisiología , Ácido Glutámico/metabolismo , Guanilato-Quinasas , Hipocampo/embriología , Hipocampo/metabolismo , Hipocampo/ultraestructura , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Neuropéptidos/genética , Neuropéptidos/metabolismo , Técnicas de Cultivo de Órganos , Transporte de Proteínas/fisiología , Ratas , Agregación de Receptores/fisiología , Sinapsis/ultraestructura , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestructura
16.
J Cell Biol ; 169(3): 399-404, 2005 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-15883194

RESUMEN

Dynamic regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) underlies aspects of synaptic plasticity. Although numerous AMPAR-interacting proteins have been identified, their quantitative and relative contributions to native AMPAR complexes remain unclear. Here, we quantitated protein interactions with neuronal AMPARs by immunoprecipitation from brain extracts. We found that stargazin-like transmembrane AMPAR regulatory proteins (TARPs) copurified with neuronal AMPARs, but we found negligible binding to GRIP, PICK1, NSF, or SAP-97. To facilitate purification of neuronal AMPAR complexes, we generated a transgenic mouse expressing an epitope-tagged GluR2 subunit of AMPARs. Taking advantage of this powerful new tool, we isolated two populations of GluR2 containing AMPARs: an immature complex with the endoplasmic reticulum chaperone immunoglobulin-binding protein and a mature complex containing GluR1, TARPs, and PSD-95. These studies establish TARPs as the auxiliary components of neuronal AMPARs.


Asunto(s)
Encéfalo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Membranas Sinápticas/metabolismo , Animales , Canales de Calcio/metabolismo , Línea Celular , Homólogo 4 de la Proteína Discs Large , Chaperón BiP del Retículo Endoplásmico , Guanilato-Quinasas , Proteínas de Choque Térmico/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Linfocinas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Chaperonas Moleculares/metabolismo , Oocitos , Receptores AMPA/genética , Xenopus
17.
J Cell Biol ; 170(7): 1127-34, 2005 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-16186258

RESUMEN

Synapses are highly specialized intercellular junctions organized by adhesive and scaffolding molecules that align presynaptic vesicular release with postsynaptic neurotransmitter receptors. The MALS/Veli-CASK-Mint-1 complex of PDZ proteins occurs on both sides of the synapse and has the potential to link transsynaptic adhesion molecules to the cytoskeleton. In this study, we purified the MALS protein complex from brain and found liprin-alpha as a major component. Liprin proteins organize the presynaptic active zone and regulate neurotransmitter release. Fittingly, mutant mice lacking all three MALS isoforms died perinatally with difficulty breathing and impaired excitatory synaptic transmission. Excitatory postsynaptic currents were dramatically reduced in autaptic cultures from MALS triple knockout mice due to a presynaptic deficit in vesicle cycling. These findings are consistent with a model whereby the MALS-CASK-liprin-alpha complex recruits components of the synaptic release machinery to adhesive proteins of the active zone.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Neurotransmisores/metabolismo , Terminales Presinápticos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Portadoras/genética , Células Cultivadas , Femenino , Marcación de Gen , Sustancias Macromoleculares/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Neuronas/fisiología , Tamaño de la Partícula , Técnicas de Placa-Clamp , Proteómica , Transmisión Sináptica/genética , Técnicas del Sistema de Dos Híbridos , Proteínas de Transporte Vesicular
18.
Proc Natl Acad Sci U S A ; 104(47): 18784-8, 2007 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-18000041

RESUMEN

Naturally occurring glutamate analogs, such as kainate and domoate, which cause excitotoxic shellfish poisoning, induce nondesensitizing responses at neuronal alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. In addition to acting on AMPA receptors, kainate and domoate also activate high-affinity kainate-type glutamate receptors. The receptor type that mediates their neurotoxicity remains uncertain. Here, we show that the transmembrane AMPA receptor-associated protein (TARP) gamma-2 (or stargazin) and the related TARP gamma-8 augment responses to kainate and domoate by making these neurotoxins more potent and more efficacious AMPA receptor agonists. Genetic deletion of hippocampal enriched gamma-8 selectively abolishes sustained depolarizations in hippocampus mediated by kainate activation of AMPA receptors. gamma-8 knockout mice display typical kainate-induced seizures; however, the associated neuronal cell death in the hippocampus is attenuated in mice lacking gamma-8. This work decisively demonstrates that TARP-associated AMPA receptors mediate kainate neurotoxicity and identifies TARPs as targets for modulating neurotoxic properties of AMPA receptors.


Asunto(s)
Canales de Calcio/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ácido Kaínico/toxicidad , Receptores AMPA/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Electrofisiología , Hipocampo/citología , Ácido Kaínico/análogos & derivados , Ácido Kaínico/química , Ácido Kaínico/farmacología , Ratones , Estructura Molecular , Técnicas de Placa-Clamp , Xenopus laevis
19.
Nat Rev Drug Discov ; 19(12): 884-901, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33177699

RESUMEN

Targeting receptor proteins, such as ligand-gated ion channels and G protein-coupled receptors, has directly enabled the discovery of most drugs developed to modulate receptor signalling. However, as the search for novel and improved drugs continues, an innovative approach - targeting receptor complexes - is emerging. Receptor complexes are composed of core receptor proteins and receptor-associated proteins, which have profound effects on the overall receptor structure, function and localization. Hence, targeting key protein-protein interactions within receptor complexes provides an opportunity to develop more selective drugs with fewer side effects. In this Review, we discuss our current understanding of ligand-gated ion channel and G protein-coupled receptor complexes and discuss strategies for their pharmacological modulation. Although such strategies are still in preclinical development for most receptor complexes, they exemplify how receptor complexes can be drugged, and lay the groundwork for this nascent area of research.


Asunto(s)
Descubrimiento de Drogas , Activación del Canal Iónico , Canales Iónicos/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Humanos
20.
Nat Commun ; 11(1): 2799, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493979

RESUMEN

Small molecule polyamines are abundant in all life forms and participate in diverse aspects of cell growth and differentiation. Spermidine/spermine acetyltransferase (SAT1) is the rate-limiting enzyme in polyamine catabolism and a primary genetic risk factor for suicidality. Here, using genome-wide screening, we find that SAT1 selectively controls nicotinic acetylcholine receptor (nAChR) biogenesis. SAT1 specifically augments assembly of nAChRs containing α7 or α4ß2, but not α6 subunits. Polyamines are classically studied as regulators of ion channel gating that engage the nAChR channel pore. In contrast, we find polyamine effects on assembly involve the nAChR cytosolic loop. Neurological studies link brain polyamines with neurodegenerative conditions. Our pharmacological and transgenic animal studies find that reducing polyamines enhances cortical neuron nAChR expression and augments nicotine-mediated neuroprotection. Taken together, we describe a most unexpected role for polyamines in regulating ion channel assembly, which provides a new avenue for nAChR neuropharmacology.


Asunto(s)
Canales Iónicos/metabolismo , Poliaminas/metabolismo , Receptores Nicotínicos/metabolismo , Acetiltransferasas , Animales , Biocatálisis , ADN Complementario/genética , Elementos de Facilitación Genéticos/genética , Fluorescencia , Genoma Humano , Células HEK293 , Humanos , Activación del Canal Iónico , Ratones , Neuronas/metabolismo , Neuroprotección/efectos de los fármacos , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ratas , Receptores Nicotínicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA