Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Dis ; 104(3): 752-760, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31910116

RESUMEN

Leaf rust, caused by Puccinia triticina Erikss., is globally the most widespread rust of wheat. Populations of P. triticina are highly diverse for virulence, with many different races found annually. The genetic diversity of P. triticina populations has been previously assessed using different types of DNA markers. Genotyping technologies that provide a higher density of markers distributed across the genome will be more powerful for analysis of genetic and phylogenetic relationships in P. triticina populations. In this study, we utilized restriction-associated DNA (RAD) genotyping-by-sequencing (GBS) adapted for the Ion Torrent sequencing platform for the study of population diversity in P. triticina. A collection of 102 isolates, collected mainly from tetraploid and hexaploid wheat, was used. The virulence phenotypes of the isolates were determined on 20 lines of Thatcher wheat near isogenic for leaf rust resistance genes. Seven races were found among 57 isolates collected from tetraploid wheat, and 21 races were observed among 40 hexaploid wheat type isolates. This is the first study to report durum wheat virulent races to Lr3bg in Tunisia, Lr14a in Morocco, and Lr3bg and Lr28 in Mexico. Ethiopian isolates with high virulence to durum wheat but avirulent on Thatcher (hexaploid wheat) were tested for virulence on a set of durum (tetraploid) differentials. A subset of 30 isolates representing most of the virulence phenotypes in the 102 isolates were genotyped using RAD-GBS. Phylogenetic analysis of 30 isolates using 2,125 single nucleotide polymorphism (SNP) markers showed nine distinct clusters. There was a general correlation between virulence phenotypes and SNP genotypes. The high bootstrap values between clusters of isolates in the phylogenetic tree indicated that RAD-GBS can be used as a new genotyping tool that is fast, simple, high throughput, cost effective, and provides a sufficient number of markers for the study of genetic diversity in P. triticina.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Enfermedades de las Plantas , Genotipo , México , Marruecos , Filogenia
2.
Front Plant Sci ; 14: 1090163, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36818858

RESUMEN

Leaf rust, caused by Puccinia triticina (Pt) is among the most devastating diseases posing a significant threat to global wheat production. The continuously evolving virulent Pt races in North America calls for exploring new sources of leaf rust resistance. A diversity panel of 365 bread wheat accessions selected from a worldwide population of landraces and cultivars was evaluated at the seedling stage against four Pt races (TDBJQ, TBBGS, MNPSD and, TNBJS). A wide distribution of seedling responses against the four Pt races was observed. Majority of the genotypes displayed a susceptible response with only 28 (9.8%), 59 (13.5%), 45 (12.5%), and 29 (8.1%) wheat accessions exhibiting a highly resistant response to TDBJQ, TBBGS, MNPSD and, TNBJS, respectively. Further, we conducted a high-resolution multi-locus genome-wide association study (GWAS) using a set of 302,524 high-quality single nucleotide polymorphisms (SNPs). The GWAS analysis identified 27 marker-trait associations (MTAs) for leaf rust resistance on different wheat chromosomes of which 20 MTAs were found in the vicinity of known Lr genes, MTAs, or quantitative traits loci (QTLs) identified in previous studies. The remaining seven significant MTAs identified represent genomic regions that harbor potentially novel genes for leaf rust resistance. Furthermore, the candidate gene analysis for the significant MTAs identified various genes of interest that may be involved in disease resistance. The identified resistant lines and SNPs linked to the QTLs in this study will serve as valuable resources in wheat rust resistance breeding programs.

3.
G3 (Bethesda) ; 9(8): 2535-2547, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31278174

RESUMEN

Leaf rust caused by Puccinia triticina Erikss. (Pt) and stem rust caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn (Pgt) are serious constraints to production of durum wheat (Triticum turgidum L). The objective of this study was to identify leaf rust resistance (Lr) and stem rust resistance (Sr) genes/QTL in Portuguese durum landrace PI 192051. Four Pt-isolates, representing three virulence phenotypes (BBBQJ, BBBSJ & EEEEE) and six Pgt-races TTKSK, JRCQC, TKTTF, QFCFC, TPMKC and TMLKC were used to evaluate 180 recombinant inbred lines (RILs) derived from the cross Rusty (rust susceptible) × PI 192051-1 (rust resistant) at the seedling stage. The RILs were also phenotyped at the adult-plant stage in a stem rust nursery in Ethiopia in 2017. The RILs were genotyped using the Illumina iSelect 9K wheat SNP array. PI 192051-1 carries a previously unidentified major Sr gene designated as QSr.ace-7A on chromosome arm 7AS and Lr gene Lr.ace-4A in the pericentromeric region of chromosome 4A. In addition, three minor Sr QTL QSr.ace-1A, QSr.ace-2B and QSr.ace-4A were mapped in PI 192051-1 on chromosomes 1AL, 2BL, and 4A, respectively Lr.ace-4A could be co-located or tightly linked to QSr.ace-4A Markers linked to the identified QTL/genes can be used for marker assisted selection. These findings enrich the genetic basis of rust resistance in both durum and common wheat.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/genética , Triticum/genética , Cromosomas de las Plantas , Ligamiento Genético , Marcadores Genéticos , Genotipo , Fenotipo , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Triticum/microbiología
4.
Front Plant Sci ; 9: 1616, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30467511

RESUMEN

Aegilops markgrafii (Greuter) Hammer is an important source of genes for resistance to abiotic stresses and diseases in wheat (Triticum aestivum L.). A series of six wheat 'Alcedo'-Ae. markgrafii chromosome disomic addition lines, designated as AI(B), AII(C), AIII(D), AV(E), AIV(F), and AVIII(G) carrying the Ae. markgrafii chromosomes B, C, D, E, F, and G, respectively, were tested with SSR markers to establish homoeologous relationships to wheat and identify markers useful in chromosome engineering. The addition lines were evaluated for resistance to rust and powdery mildew diseases. The parents Alcedo and Ae. markgrafii accession 'S740-69' were tested with 1500 SSR primer pairs and 935 polymorphic markers were identified. After selecting for robust markers and confirming the polymorphisms on the addition lines, 132 markers were considered useful for engineering and establishing homoeologous relationships. Based on the marker analysis, we concluded that the chromosomes B, C, D, E, F, and G belong to wheat homoeologous groups 2, 5, 6, 7, 3, and 4, respectively. Also, we observed chromosomal rearrangements in several addition lines. When tested with 20 isolates of powdery mildew pathogen (Blumeria graminis f. sp. tritici) from five geographic regions of the United States, four addition lines [AIII(D), AV(E), AIV(F), and AVIII(G)] showed resistance to some isolates, with addition line AV(E) being resistant to 19 of 20 isolates. The addition lines were tested with two races (TDBJ and TNBJ) of the leaf rust pathogen (Puccinia triticina), and only addition line AI(B) exhibited resistance at a level comparable to the Ae. markgrafii parent. Addition lines AII(C) and AIII(D) had been previously identified as resistant to the Ug99 race group of the stem rust pathogen (Puccinia graminis f. sp. tritici). The addition lines were also tested for resistance to six United States races (PSTv-4, PSTv-14, PSTv-37, PSTv-40, PSTv-51, and PSTv-198) of the stripe rust pathogen (Puccinia striiformis f. sp. tritici); we found no resistance either in Alcedo or any of the addition lines. The homoeologous relationships of the chromosomes in the addition lines, molecular markers located on each chromosome, and disease resistance associated with each chromosome will allow for chromosome engineering of the resistance genes.

5.
Plant Genome ; 9(3)2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27902791

RESUMEN

Leaf rust (caused by Erikss. []) is increasingly impacting durum wheat ( L. var. ) production with the recent appearance of races with virulence to widely grown cultivars in many durum producing areas worldwide. A highly virulent race on durum wheat was recently detected in Kansas. This race may spread to the northern Great Plains, where most of the US durum wheat is produced. The objective of this study was to identify sources of resistance to several races from the United States and Mexico at seedling stage in the greenhouse and at adult stage in field experiments. Genome-wide association study (GWAS) was used to identify single-nucleotide polymorphism (SNP) markers associated with leaf rust response in a worldwide durum wheat collection of 496 accessions. Thirteen accessions were resistant across all experiments. Association mapping revealed 88 significant SNPs associated with leaf rust response. Of these, 33 SNPs were located on chromosomes 2A and 2B, and 55 SNPs were distributed across all other chromosomes except for 1B and 7B. Twenty markers were associated with leaf rust response at seedling stage, while 68 markers were associated with leaf rust response at adult plant stage. The current study identified a total of 14 previously uncharacterized loci associated with leaf rust response in durum wheat. The discovery of these loci through association mapping (AM) is a significant step in identifying useful sources of resistance that can be used to broaden the relatively narrow leaf rust resistance spectrum in durum wheat germplasm.


Asunto(s)
Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Marcadores Genéticos , Kansas , México , Semillas/genética , Semillas/microbiología , Triticum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA