Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Opt ; 55(16): 4285-92, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27411177

RESUMEN

The use of a grazing incidence optic to selectively reflect K-shell fluorescence emission and isotope-specific lines from special nuclear materials is a highly desirable nondestructive analysis method for use in reprocessing fuel environments. Preliminary measurements have been performed, and a simulation suite has been developed to give insight into the design of the x ray optics system as a function of the source emission, multilayer coating characteristics, and general experimental configurations. The experimental results are compared to the predictions from our simulation toolkit to illustrate the ray-tracing capability and explore the effect of modified optics in future measurement campaigns.

2.
Rev Sci Instrum ; 87(11): 11E316, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910471

RESUMEN

Current two-dimensional X-ray imaging at the National Ignition Facility (NIF) uses time resolved pinhole cameras with ∼10-25 µm pinholes. This method has limitations in the smallest resolvable features that can be imaged with reasonable photon statistics for inertial confinement fusion (ICF) applications. ICF sources have a broadband self-emission spectrum that causes the pinhole images obtained, through thin foil filters, to contain a similarly broadband spectrum complicating the interpretation of structure in the source. In order to study phenomena on the scale of ∼5 µm, such as dopant mix in the ICF capsule, a narrow energy band, higher spatial resolution microscope system with improved signal/noise has been developed using X-ray optics. Utilizing grazing incidence mirrors in a Kirkpatrick-Baez microscope (KBM) configuration [P. Kirkpatrick and A. V. Baez, J. Opt. Soc. Am. 38, 766-774 (1948)], an X-ray microscope has been designed and fielded on NIF with four imaging channels. The KBM has ∼12 × magnification, <8 µm resolution, and higher throughput in comparison to similar pinhole systems. The first KBM mirrors are coated with a multilayer mirror to allow a "narrow band" energy response at 10.2 keV with ΔE ∼ 3 keV. By adjusting the mirror coating only, the energy response can be matched to the future experimental requirements. Several mirror packs have been commissioned and are interchangeable in the diagnostic snout.

3.
Rev Sci Instrum ; 86(1): 013110, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25638075

RESUMEN

A multilayer-based optic was tested for use as an X-ray diagnostic on a laser-plasma experiment. The multilayer optic was employed to selectively pass X-rays between 55 and 100 keV. An order of magnitude improvement in signal-to-noise ratio is achieved compared to a transmission crystal spectrometer. A multilayer response model, taking into account the source size and spectral content, is constructed and the outlook for application above 500 keV is briefly discussed. LLNL-JRNL-664311.

4.
Rev Sci Instrum ; 85(11): 11D611, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25430187

RESUMEN

Current pinhole x ray imaging at the National Ignition Facility (NIF) is limited in resolution and signal throughput to the detector for Inertial Confinement Fusion applications, due to the viable range of pinhole sizes (10-25 µm) that can be deployed. A higher resolution and throughput diagnostic is in development using a Kirkpatrick-Baez microscope system (KBM). The system will achieve <9 µm resolution over a 300 µm field of view with a multilayer coating operating at 10.2 keV. Presented here are the first images from the uncoated NIF KBM configuration demonstrating high resolution has been achieved across the full 300 µm field of view.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA