Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Virol ; 93(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30487274

RESUMEN

Vesicular stomatitis virus (VSV) (a rhabdovirus) and its variant VSV-ΔM51 are widely used model systems to study mechanisms of virus-host interactions. Here, we investigated how the cell cycle affects replication of these viruses using an array of cell lines with different levels of impairment of antiviral signaling and a panel of chemical compounds arresting the cell cycle at different phases. We observed that all compounds inducing cell cycle arrest in G2/M phase strongly enhanced the replication of VSV-ΔM51 in cells with functional antiviral signaling. G2/M arrest strongly inhibited type I and type III interferon (IFN) production as well as expression of IFN-stimulated genes in response to exogenously added IFN. Moreover, G2/M arrest enhanced the replication of Sendai virus (a paramyxovirus), which is also highly sensitive to the type I IFN response but did not stimulate the replication of a wild-type VSV that is more effective at evading antiviral responses. In contrast, the positive effect of G2/M arrest on virus replication was not observed in cells defective in IFN signaling. Altogether, our data show that replication of IFN-sensitive cytoplasmic viruses can be strongly stimulated during G2/M phase as a result of inhibition of antiviral gene expression, likely due to mitotic inhibition of transcription, a global repression of cellular transcription during G2/M phase. The G2/M phase thus could represent an "Achilles' heel" of the infected cell, a phase when the cell is inadequately protected. This model could explain at least one of the reasons why many viruses have been shown to induce G2/M arrest.IMPORTANCE Vesicular stomatitis virus (VSV) (a rhabdovirus) and its variant VSV-ΔM51 are widely used model systems to study mechanisms of virus-host interactions. Here, we investigated how the cell cycle affects replication of VSV and VSV-ΔM51. We show that G2/M cell cycle arrest strongly enhances the replication of VSV-ΔM51 (but not of wild-type VSV) and Sendai virus (a paramyxovirus) via inhibition of antiviral gene expression, likely due to mitotic inhibition of transcription, a global repression of cellular transcription during G2/M phase. Our data suggest that the G2/M phase could represent an "Achilles' heel" of the infected cell, a phase when the cell is inadequately protected. This model could explain at least one of the reasons why many viruses have been shown to induce G2/M arrest, and it has important implications for oncolytic virotherapy, suggesting that frequent cell cycle progression in cancer cells could make them more permissive to viruses.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Vesiculovirus/genética , Replicación Viral/genética , Animales , Antivirales/farmacología , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Citoplasma , Fase G2/fisiología , Puntos de Control de la Fase G2 del Ciclo Celular/fisiología , Expresión Génica/genética , Humanos , Interferón Tipo I/metabolismo , Interferón gamma/metabolismo , Interferones , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Virus ARN/inmunología , Virus ARN/metabolismo , Virus Sendai/genética , Virus Sendai/metabolismo , Transducción de Señal , Virus de la Estomatitis Vesicular Indiana/genética , Vesiculovirus/metabolismo , Proteínas de la Matriz Viral/genética , Replicación Viral/inmunología , Interferón lambda
2.
Cell Mol Life Sci ; 74(22): 4231-4243, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28656348

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is a fatal and insidious malignant disease for which clinicians' tools are restricted by the current limits in knowledge of how tumor and stromal cells act during the disease. Among PDA hallmarks, neural remodeling (NR) and perineural invasion (PNI) drastically influence quality of life and patient survival. Indeed, NR and PNI are associated with neuropathic pain and metastasis, respectively, both of which impact clinicians' decisions and therapeutic options. The aim of this study was to determine the impact and clinical relevance of the peritumoral microenvironment, through pancreatitis-associated protein (PAP/REG3A) expression, on PNI in pancreatic cancer. First, we demonstrated that, in PDA, PAP/REG3A is produced by inflamed acinar cells from the peritumoral microenvironment and then enhances the migratory and invasive abilities of cancer cells. More specifically, using perineural ex vivo assays we revealed that PAP/REG3A favors PNI through activation of the JAK/STAT signaling pathway in cancer cells. Finally, we analyzed the level of PAP/REG3A in blood from healthy donors or patients with PDA from three independent cohorts. Patients with high levels of PAP/REG3A had overall shorter survival as well as poor surgical outcomes with reduced disease-free survival. Our study provides a rationale for using the PAP/REG3A level as a biomarker to improve pancreatic cancer prognosis. It also suggests that therapeutic targeting of PAP/REG3A activity in PDA could limit tumor cell aggressiveness and PNI.


Asunto(s)
Antígenos de Neoplasias/sangre , Biomarcadores de Tumor/sangre , Carcinoma Ductal Pancreático/diagnóstico , Lectinas Tipo C/sangre , Neoplasias Pancreáticas/diagnóstico , Perineo/patología , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidad , Línea Celular , Movimiento Celular/efectos de los fármacos , Técnicas de Cocultivo , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ratones , Microscopía Fluorescente , Invasividad Neoplásica , Fibras Nerviosas/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Proteínas Asociadas a Pancreatitis , Pronóstico , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Tirfostinos/farmacología
3.
Mol Ther Oncolytics ; 24: 59-76, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-34977342

RESUMEN

Vesicular stomatitis virus (VSV) is a promising oncolytic virus (OV) against different malignancies, including pancreatic ductal adenocarcinoma (PDAC). Our previous studies have demonstrated that VSV-based OVs are effective against the majority of tested human PDAC cell lines. However, some PDAC cell lines are resistant to VSV. PDAC is one of the deadliest types of human malignancies in part due to intrinsic or acquired chemoresistance. Here, we investigated how acquired chemoresistance impacts the efficacy of VSV-based OV therapy. Using an experimental evolution approach, we generated PDAC cell lines with increased resistance to gemcitabine and examined their responsiveness to oncolytic virotherapy. We found that gemcitabine-resistant PDAC cells become more resistant to VSV. The cross-resistance correlated with upregulated levels of a subset of interferon-stimulated genes, resembling the interferon-related DNA damage resistance signature (IRDS), often associated with resistance of cancer cells to chemotherapy and/or radiation therapy. Analysis of ten different PDAC cell lines showed that four PDAC cell lines most resistant to VSV were also highly resistant to gemcitabine, and they all displayed IRDS-like expression in our previous reports. Our study highlights a possible interaction between two different therapies that should be considered in the future for the development of rational treatment regimens.

4.
PLoS One ; 17(12): e0276905, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36520934

RESUMEN

c-Rel, a member of the nuclear factor kappa B (NF-κB) family, is preferentially expressed by immune cells and is known to regulate inflammation, autoimmune diseases and cancer. However, there is a lack of therapeutic intervention to specifically inhibit c-Rel in immune cells. Recent success with Pfizer and Moderna mRNA lipid-encapsulated vaccines as well as FDA approved medicines based on siRNA prompted us to test a lipid nanoparticle-based strategy to silence c-Rel in immune cells. Specifically, we encapsulated c-Rel-targeting siRNA into distearoyl-phosphatidylserine (DSPS)-containing nanoparticles. DSPS is a saturated phospholipid that serves as the "eat-me" signal for professional phagocytes such as macrophages and neutrophils of the immune system. We demonstrated here that incorporation of DSPS in liposome nanoparticles (LNP) improved their uptake by immune cells. LNP containing high concentrations of DSPS were highly effective to transfect not only macrophages and neutrophils, but also lymphocytes, with limited toxicity to cells. However, LNP containing low concentrations of DSPS were more effective to transfect myeloid cells than lymphoid cells. Importantly, DSPS-LNP loaded with a c-Rel siRNA were highly effective to inhibit c-Rel expression in several professional phagocytes tested, which lasted for several days. Taken together, our results suggest that DSPS-LNP armed with c-Rel siRNA could be exploited to target immune cells to limit the development of inflammatory diseases or cancer caused by c-Rel upregulation. In addition, this newly developed DSPS-LNP system may be further tested to encapsulate and deliver other small molecule drugs to immune cells, especially macrophages, neutrophils, and lymphocytes for the treatment of diseases.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , ARN Interferente Pequeño/genética , Liposomas , Fosfatidilserinas , Linfocitos
5.
Cancer Res ; 78(4): 909-921, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29269518

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive stroma and pathogenic modifications to the peripheral nervous system that elevate metastatic capacity. In this study, we show that the IL6-related stem cell-promoting factor LIF supports PDAC-associated neural remodeling (PANR). LIF was overexpressed in tumor tissue compared with healthy pancreas, but its receptors LIFR and gp130 were expressed only in intratumoral nerves. Cancer cells and stromal cells in PDAC tissues both expressed LIF, but only stromal cells could secrete it. Biological investigations showed that LIF promoted the differentiation of glial nerve sheath Schwann cells and induced their migration by activating JAK/STAT3/AKT signaling. LIF also induced neuronal plasticity in dorsal root ganglia neurons by increasing the number of neurites and the soma area. Notably, injection of LIF-blocking antibody into PDAC-bearing mice reduced intratumoral nerve density, supporting a critical role for LIF function in PANR. In serum from human PDAC patients and mouse models of PDAC, we found that LIF titers positively correlated with intratumoral nerve density. Taken together, our findings suggest LIF as a candidate serum biomarker and diagnostic tool and a possible therapeutic target for limiting the impact of PANR in PDAC pathophysiology and metastatic progression.Significance: This study suggests a target to limit neural remodeling in pancreatic cancer, which contributes to poorer quality of life and heightened metastatic progression in patients. Cancer Res; 78(4); 909-21. ©2017 AACR.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Neuronas/metabolismo , Neoplasias Pancreáticas/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Femenino , Xenoinjertos , Humanos , Factor Inhibidor de Leucemia/genética , Masculino , Ratones , Neuronas/patología , Páncreas/inervación , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fosforilación , Células RAW 264.7 , Transducción de Señal
6.
Mol Ther Oncolytics ; 5: 20-40, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28480326

RESUMEN

Oncolytic virus (OV) therapy utilizes replication-competent viruses to kill cancer cells, leaving non-malignant cells unharmed. With the first U.S. Food and Drug Administration-approved OV, dozens of clinical trials ongoing, and an abundance of translational research in the field, OV therapy is poised to be one of the leading treatments for cancer. A number of recombinant OVs expressing a transgene for p53 (TP53) or another p53 family member (TP63 or TP73) were engineered with the goal of generating more potent OVs that function synergistically with host immunity and/or other therapies to reduce or eliminate tumor burden. Such transgenes have proven effective at improving OV therapies, and basic research has shown mechanisms of p53-mediated enhancement of OV therapy, provided optimized p53 transgenes, explored drug-OV combinational treatments, and challenged canonical roles for p53 in virus-host interactions and tumor suppression. This review summarizes studies combining p53 gene therapy with replication-competent OV therapy, reviews preclinical and clinical studies with replication-deficient gene therapy vectors expressing p53 transgene, examines how wild-type p53 and p53 modifications affect OV replication and anti-tumor effects of OV therapy, and explores future directions for rational design of OV therapy combined with p53 gene therapy.

7.
Oncotarget ; 8(57): 97344-97360, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29228615

RESUMEN

The anti-tumor potential of oncolytic adenoviruses (CRAds) has been demonstrated in preclinical and clinical studies. While these agents failed to eradicate tumors when used as a monotherapy, they may be more effective if combined with conventional treatments such as radiotherapy or chemotherapy. This study seeks to evaluate the combination of a CRAd bearing a ∆24 deletion in E1A with valproic acid (VPA), a histone deacetylase inhibitor, for the treatment of human colon carcinomas. This combination led to a strong inhibition of cell growth both in vitro and in vivo compared to treatment with CRAd or VPA alone. This effect did not stem from a better CRAd replication and production in the presence of VPA. Inhibition of cell proliferation and cell death were induced by the combined treatment. Moreover, whereas cells treated only with CRAd displayed a polyploidy (> 4N population), this phenotype was increased in cells treated with both CRAd and VPA. In addition, the increase in polyploidy triggered by combined treatment with CRAd and VPA was associated with the enhancement of H2AX phosphorylation (γH2AX), a hallmark of DNA damage, but also with a decrease of several DNA repair proteins. Finally, viral replication (or E1A expression) was shown to play a key role in the observed effects since no enhancement of polyploidy nor increase in γH2AX were found following cell treatment with a replication-deficient Ad and VPA. Taken together, our results suggest that CRAd and VPA could be used in combination for the treatment of colon carcinomas.

8.
J Clin Invest ; 126(11): 4140-4156, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27701147

RESUMEN

The intratumoral microenvironment, or stroma, is of major importance in the pathobiology of pancreatic ductal adenocarcinoma (PDA), and specific conditions in the stroma may promote increased cancer aggressiveness. We hypothesized that this heterogeneous and evolving compartment drastically influences tumor cell abilities, which in turn influences PDA aggressiveness through crosstalk that is mediated by extracellular vesicles (EVs). Here, we have analyzed the PDA proteomic stromal signature and identified a contribution of the annexin A6/LDL receptor-related protein 1/thrombospondin 1 (ANXA6/LRP1/TSP1) complex in tumor cell crosstalk. Formation of the ANXA6/LRP1/TSP1 complex was restricted to cancer-associated fibroblasts (CAFs) and required physiopathologic culture conditions that improved tumor cell survival and migration. Increased PDA aggressiveness was dependent on tumor cell-mediated uptake of CAF-derived ANXA6+ EVs carrying the ANXA6/LRP1/TSP1 complex. Depletion of ANXA6 in CAFs impaired complex formation and subsequently impaired PDA and metastasis occurrence, while injection of CAF-derived ANXA6+ EVs enhanced tumorigenesis. We found that the presence of ANXA6+ EVs in serum was restricted to PDA patients and represents a potential biomarker for PDA grade. These findings suggest that CAF-tumor cell crosstalk supported by ANXA6+ EVs is predictive of PDA aggressiveness, highlighting a therapeutic target and potential biomarker for PDA.


Asunto(s)
Anexina A6/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Micropartículas Derivadas de Células/metabolismo , Fibroblastos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Carcinoma Ductal Pancreático/patología , Comunicación Celular , Micropartículas Derivadas de Células/patología , Femenino , Fibroblastos/patología , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Ratones , Ratones Desnudos , Neoplasias Pancreáticas/patología
9.
Biochem Pharmacol ; 90(2): 97-106, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24832861

RESUMEN

Oncolytic adenoviruses have been used in different preclinical and clinical studies, showing their capacity to kill tumor cells without major adverse events. However, these studies also underline the limitations of this approach. The efficacy of oncolytic adenoviruses is hampered by their limited ability to transduce some tumor types, their lack of selectivity, and their poor dissemination within tumors. In addition, the host immune response may limit oncolytic adenovirus efficacy. Combining oncolytic adenoviruses with chemotherapeutics constitutes an appealing strategy to increase their potency. The first part of this review describes the molecular basis of oncolytic adenoviruses, their use in preclinical studies and clinical trials, their limitations, and strategies to circumvent these limitations. The second part will focus on studies combining oncolytic adenoviruses with chemotherapeutic drugs, including standard chemotherapeutic drugs, molecularly targeted drugs, and other drugs that have been combined with oncolytic adenoviruses. Finally, based on these studies, we describe future directions and general rules that could be followed to identify chemotherapeutic drugs displaying additive/synergistic effects when combined with oncolytic adenoviruses.


Asunto(s)
Adenoviridae/genética , Genoma Viral , Neoplasias/terapia , Viroterapia Oncolítica , Virus Oncolíticos/genética , Proteínas Virales/genética , Antineoplásicos/uso terapéutico , Ensayos Clínicos como Asunto , Terapia Combinada , Humanos , Terapia Molecular Dirigida , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA