Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 29(11): 16665-16675, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34154224

RESUMEN

We investigate the effect of 2-beam coupling in different imaging geometries in generating intensity-difference squeezing from four-wave mixing (4WM) in Rb atomic vapors. A recently-introduced dual-seeding technique can cancel out the classical noise in a seeded four-wave mixing process. This dual-seeding technique, however, can introduce new complications that involve 2-beam coupling between different seeded spatial modes in the atomic vapor and can ruin squeezing at frequencies on the order of the atomic linewidth and below. This complicates some forms of quantum imaging using these systems. Here we show that seeding the 4WM process with skew rays can eliminate the excess noise caused by 2-beam coupling. To avoid 2-beam coupling in bright, seeded images, it is important to re-image the object in the gain medium, instead of focussing through it.

2.
Opt Express ; 28(10): 14573-14579, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403495

RESUMEN

Fast and slow light media exploit a steep frequency dependence in their index of refraction in order to advance or delay a modulated signal. Here we observe a qualitatively similar advance and delay from an optical phase-sensitive amplifier (PSA). Unlike in the case of slow and fast light, this effect is due to a redistribution of power between imbalanced signal sidebands, and the advance or delay is dependent on the optical phase of the input. The PSA adds energy and also changes the frequency spectrum of the input. We show that the advances and delays observed in a PSA implemented using four-wave mixing in a warm rubidium vapor are consistent with the expected behavior of an ideal PSA.

3.
Opt Express ; 27(4): 4769-4780, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30876087

RESUMEN

We report the generation of strong, bright-beam intensity-difference squeezing down to measurement frequencies below 10 Hz. We generate two-mode squeezing in a four-wave mixing (4WM) process in Rb vapor, where the single-pass-gain nonlinear process does not require cavity locking and only relies on passive stability. We use diode laser technology and several techniques, including dual seeding, to remove the noise introduced by seeding the 4WM process as well as the background noise. Twin-beam intensity-difference squeezing down to frequencies limited only by the mechanical and atmospheric stability of the lab is achieved. These results should enable important low-frequency applications such as direct intensity-difference imaging with bright beams on integrating detectors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA