Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Blood ; 125(2): 327-35, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25281607

RESUMEN

Signaling mutations (eg, JAK2V617F) and mutations in genes involved in epigenetic regulation (eg, TET2) are the most common cooccurring classes of mutations in myeloproliferative neoplasms (MPNs). Clinical correlative studies have demonstrated that TET2 mutations are enriched in more advanced phases of MPNs such as myelofibrosis and leukemic transformation, suggesting that they may cooperate with JAK2V617F to promote disease progression. To dissect the effects of concomitant Jak2V617F expression and Tet2 loss within distinct hematopoietic compartments in vivo, we generated Jak2V617F/Tet2 compound mutant genetic mice. We found that the combination of Jak2V617F expression and Tet2 loss resulted in a more florid MPN phenotype than that seen with either allele alone. Concordant with this, we found that Tet2 deletion conferred a strong functional competitive advantage to Jak2V617F-mutant hematopoietic stem cells (HSCs). Transcriptional profiling revealed that both Jak2V617F expression and Tet2 loss were associated with distinct and nonoverlapping gene expression signatures within the HSC compartment. In aggregate, our findings indicate that Tet2 loss drives clonal dominance in HSCs, and Jak2V617F expression causes expansion of downstream precursor cell populations, resulting in disease progression through combinatorial effects. This work provides insight into the functional consequences of JAK2V617F-TET2 comutation in MPNs, particularly as it pertains to HSCs.


Asunto(s)
Proteínas de Unión al ADN/genética , Células Madre Hematopoyéticas/patología , Janus Quinasa 2/genética , Trastornos Mieloproliferativos/genética , Proteínas Proto-Oncogénicas/genética , Animales , Dioxigenasas , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Citometría de Flujo , Perfilación de la Expresión Génica , Ratones , Ratones Transgénicos , Mutación
2.
Blood ; 121(18): 3692-702, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23487027

RESUMEN

Interferon-α (IFNα) is an effective treatment of patients with myeloproliferative neoplasms (MPNs). In addition to inducing hematological responses in most MPN patients, IFNα reduces the JAK2V617F allelic burden and can render the JAK2V617F mutant clone undetectable in some patients. The precise mechanism underlying these responses is incompletely understood and whether the molecular responses that are seen occur due to the effects of IFNα on JAK2V617F mutant stem cells is debated. Using a murine model of Jak2V617F MPN, we investigated the effects of IFNα on Jak2V617F MPN-propagating stem cells in vivo. We report that IFNα treatment induces hematological responses in the model and causes depletion of Jak2V617F MPN-propagating cells over time, impairing disease transplantation. We demonstrate that IFNα treatment induces cell cycle activation of Jak2V617F mutant long-term hematopoietic stem cells and promotes a predetermined erythroid-lineage differentiation program. These findings provide insights into the differential effects of IFNα on Jak2V617F mutant and normal hematopoiesis and suggest that IFNα achieves molecular remissions in MPN patients through its effects on MPN stem cells. Furthermore, these results support combinatorial therapeutic approaches in MPN by concurrently depleting dormant JAK2V617F MPN-propagating stem cells with IFNα and targeting the proliferating downstream progeny with JAK2 inhibitors or cytotoxic chemotherapy.


Asunto(s)
Neoplasias Hematológicas/patología , Interferón-alfa/farmacología , Janus Quinasa 2/genética , Células Madre Neoplásicas/efectos de los fármacos , Policitemia Vera/patología , Sustitución de Aminoácidos/genética , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Neoplasias Hematológicas/genética , Humanos , Janus Quinasa 2/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/fisiología , Fenilalanina/genética , Policitemia Vera/tratamiento farmacológico , Policitemia Vera/genética , Valina/genética
4.
Cell Rep ; 13(11): 2345-2352, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26686625

RESUMEN

JAK2V617F is the most common oncogenic lesion in patients with myeloproliferative neoplasms (MPNs). Despite the ability of JAK2V617F to instigate DNA damage in vitro, MPNs are nevertheless characterized by genomic stability. In this study, we address this paradox by identifying the DNA helicase RECQL5 as a suppressor of genomic instability in MPNs. We report increased RECQL5 expression in JAK2V617F-expressing cells and demonstrate that RECQL5 is required to counteract JAK2V617F-induced replication stress. Moreover, RECQL5 depletion sensitizes JAK2V617F mutant cells to hydroxyurea (HU), a pharmacological inducer of replication stress and the most common treatment for MPNs. Using single-fiber chromosome combing, we show that RECQL5 depletion in JAK2V617F mutant cells impairs replication dynamics following HU treatment, resulting in increased double-stranded breaks and apoptosis. Cumulatively, these findings identify RECQL5 as a critical regulator of genome stability in MPNs and demonstrate that replication stress-associated cytotoxicity can be amplified specifically in JAK2V617F mutant cells through RECQL5-targeted synthetic lethality.


Asunto(s)
Janus Quinasa 2/metabolismo , RecQ Helicasas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Furanos/farmacología , Técnicas de Sustitución del Gen , Inestabilidad Genómica/efectos de los fármacos , Humanos , Hidroxiurea/toxicidad , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/genética , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Neoplasias/metabolismo , Neoplasias/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Piridinas/farmacología , Pirimidinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , RecQ Helicasas/genética , Transducción de Señal/efectos de los fármacos
5.
Nat Med ; 21(12): 1473-80, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26569382

RESUMEN

Primary myelofibrosis (PMF) is characterized by bone marrow fibrosis, myeloproliferation, extramedullary hematopoiesis, splenomegaly and leukemic progression. Moreover, the bone marrow and spleens of individuals with PMF contain large numbers of atypical megakaryocytes that are postulated to contribute to fibrosis through the release of cytokines, including transforming growth factor (TGF)-ß. Although the Janus kinase inhibitor ruxolitinib provides symptomatic relief, it does not reduce the mutant allele burden or substantially reverse fibrosis. Here we show through pharmacologic and genetic studies that aurora kinase A (AURKA) represents a new therapeutic target in PMF. Treatment with MLN8237, a selective AURKA inhibitor, promoted polyploidization and differentiation of megakaryocytes with PMF-associated mutations and had potent antifibrotic and antitumor activity in vivo in mouse models of PMF. Moreover, heterozygous deletion of Aurka was sufficient to ameliorate fibrosis and other PMF features in vivo. Our data suggest that megakaryocytes drive fibrosis in PMF and that targeting them with AURKA inhibitors has the potential to provide therapeutic benefit.


Asunto(s)
Aurora Quinasa A/antagonistas & inhibidores , Megacariocitos/metabolismo , Mielofibrosis Primaria/enzimología , Mielofibrosis Primaria/patología , Animales , Antígenos CD34/metabolismo , Apoptosis/efectos de los fármacos , Aurora Quinasa A/metabolismo , Azepinas/farmacología , Azepinas/uso terapéutico , Western Blotting , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Costo de Enfermedad , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Heterocigoto , Concentración 50 Inhibidora , Janus Quinasa 2/genética , Megacariocitos/efectos de los fármacos , Ratones , Mutación/genética , Nitrilos , Poliploidía , Mielofibrosis Primaria/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Receptores de Trombopoyetina/genética , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA