RESUMEN
The dominant wavelength and hue angle can be used to quantify the color of lake water. Understanding the water color is important because the color relates to the water quality and its related public perceptions. In this paper, we compared the accuracy levels of two methods in calculating dominant wavelength and hue angle values using simulated satellite data calculated from in situ reflectance hyperspectra for 325 lakes and rivers in Minnesota and Wisconsin. The methods developed by van der Woerd and Wernand in 2015 and Wang et al. in 2015 were applied to simulated sensor data from the Sentinel-2, Sentinel-3, and Landsat 8 satellites. Both methods performed comparably when a correction algorithm could be applied, but the correction method did not work well for the Wang method at hue angles < 75°, equivalent to levels of colored dissolved organic matter (CDOM, a440) > ~2 m-1 or chlorophyll > ~10 mg m-3. The Sentinel-3 spectral bands produced the most accurate results for the van der Woerd and Wernand method, while the Landsat 8 sensor produced the most accurate values for the Wang method. The distinct differences in the shapes of the reflectance hyperspectra were related to the dominant optical water quality constituents in the water bodies, and relationships were found between the dominant wavelength and four water quality parameters, namely the Secchi depth, CDOM, chlorophyll, and Forel-Ule color index.
RESUMEN
Absorption of solar radiation by colored dissolved organic matter (CDOM) in surface waters results in the formation of photochemically produced reactive intermediates (PPRIs) that react with pollutants in water. Knowing the steady-state concentrations of PPRIs ([PPRI]ss) is critical to predicting the persistence of pollutants in sunlit surface waters. CDOM levels (a440) can be measured remotely for lakes over large areas using satellite imagery. Laboratory measurements of [PPRI]ss and apparent quantum yields (Φ) of three PPRIs (3DOM*, 1O2, and â¢OH) were made for 24 lake samples under simulated sunlight. The total rate of light absorption by the water samples (Ra), the rates of formation (Rf), and [PPRI]ss of 3DOM* and 1O2 linearly increased with increasing a440. The production rate of â¢OH was linearly correlated with a440, but the steady-state concentration was best fit by a logarithmic function. The relationship between measured a440 and Landsat 8 reflectance was used to map a440 for more than 10â¯000 lakes across Minnesota. Relationships of a440 with Rf, [PPRIs]ss, and Ra were coupled with satellite-based a440 assessments to map reactive species production rates and concentrations as well as contaminant transformation rates. This study demonstrates the potential for using satellite imagery for estimating contaminant loss via indirect photolysis in lakes.
Asunto(s)
Tecnología de Sensores Remotos , Contaminantes Químicos del Agua , Lagos , Minnesota , Fotólisis , Imágenes Satelitales , Contaminantes Químicos del Agua/análisisRESUMEN
Secchi depth (SD), a primary metric to assess trophic state, is controlled in many lakes by algal densities, measured as chlorophyll-a (chl-a) concentration. Two other optically related water quality variables also directly affect SD: non-algal suspended solids (SSNA ) and colored dissolved organic matter (CDOM, expressed as the absorption coefficient at 440 nm, a440 ). Using a database of ~1,460 samples from ~625 inland lake basins in Minnesota and two other Upper Midwest states, Wisconsin and Michigan, we analyzed relationships among these variables, with special focus on CDOM levels that influence SD values and the Minnesota SD standards used to assess eutrophication impairment of lakes. Log-transformed chl-a, total suspended solids (TSS), and SD were strongly correlated with each other; log(a440 ) had major effects on log(SD) but was only weakly correlated with log(chl-a) and log(TSS). Multiple regression models for log(SD) and 1/SD based on the three driving variables (chl-a, SSNA , and CDOM) explained ~80% of the variance in SD in the whole data set, but substantial differences in the form of the best-fit relationships were found between major ecoregions. High chl-a concentrations (> 50 µg/L) and TSS (> 20 mg/L) rarely occurred in lakes with high CDOM (a440 > ~4 m-1 ), and all lakes with a440 > 8 m-1 had SD ≤ 2.0 m despite low chl-a values (<10 µg/L) in most lakes. Further statistical analyses revealed that CDOM has significant effects on SD at a440 values > ~ 4 m-1 . Thus, SD is not an accurate trophic state metric in moderately to highly colored lakes, and Minnesota's 2-m SD criterion should not be the sole metric to assess eutrophication impairment in warm/cool-water lakes of the Northern Lakes and Forest ecoregion. More generally, trophic state assessments using SD in regions with large landscape sources of CDOM need to account for effects of CDOM on SD.
Asunto(s)
Clorofila A , Lagos , Clorofila , Monitoreo del Ambiente , Michigan , Minnesota , WisconsinRESUMEN
Water chemistry evolved from early foundations in several related disciplines. Although it is difficult to associate a precise date to its founding, several events support the argument that the field as we know it today developed in the mid-20th century--at the dawn of the "environmental era"--that is, â¼1960. The field in its modern incarnation thus is about 50 years old. In celebration of this half-centenary, we examine here the origins of water chemistry, how the field has changed over the past 50 years, and the principal driving forces for change, focusing on both the "practice" of water chemistry and ways that teaching the subject has evolved.
Asunto(s)
Química/tendencias , Agua/química , Química/educación , Curriculum , Libros de Texto como AsuntoRESUMEN
A competitive-ligand, equilibrium-dialysis technique using bromide measured methylmercury (MeHg(+)) binding to Suwannee River fulvic acid (SRFA) and NOM from a lake and a bog in Minnesota. Distribution coefficients (K(OC)) and stability constants (K') varied only slightly over a range of [Br(-)] and ratios of MeHg(+) to reduced sulfur, S(re), the putative NOM binding site. For SRFA at pH 3.0, K(OC) ranged from 10(7.7) to 10(8.2) and K' ranged from 10(15.5) to 10(16.0) over MeHg(+):S(re) ratios from 1:1220 to 1:12 200 (well below S(re) saturation). The importance of pH depends on the calculation model for binding constants. Over pH 2.98-7.62, K(OC) had little pH dependence (slope = 0.2; r(2) = 0.4; range 10(7.7)-10(9.1)), but K' calculated using thiol ligands with pK(a) = 9.96 had an inverse relationship (slope = -0.8; r(2) = 0.9; range 10(15.6)-10(12.3)). A pH-independent model was obtained only with thiol pK(a) < or = approximately 4. The mean K'(4) for SRFA (K' with thiol pK(a) = 4.2) was 10(9.8) (range 10(9.11)-10(10.27)) and small slope (0.02). Similar values were found for Spring Lake NOM; bog S2 NOM had values one-tenth as large. These constants are generally similar to published values; differences reflect variations in methods, pH, types of NOM, and calculation models.
Asunto(s)
Compuestos de Metilmercurio/química , Compuestos Orgánicos/química , Ríos/química , Bromo/química , Concentración de Iones de Hidrógeno , Cinética , Minnesota , Modelos Químicos , Azufre/análisisRESUMEN
Information on colored dissolved organic matter (CDOM) is essential for understanding and managing lakes but is often not available, especially in lake-rich regions where concentrations are often highly variable in time and space. We developed remote sensing methods that can use both Landsat and Sentinel satellite imagery to provide census-level CDOM measurements across the state of Minnesota, USA, a lake-rich landscape with highly varied lake, watershed, and climatic conditions. We evaluated the error of satellite derived CDOM resulting from two atmospheric correction methods with in situ data, and found that both provided substantial improvements over previous methods. We applied CDOM models to 2015 and 2016 Landsat 8 OLI imagery to create 2015 and 2016 Minnesota statewide CDOM maps (reported as absorption coefficients at 440 nm, a440) and used those maps to conduct a geospatial analysis at the ecoregion level. Large differences in a440 among ecoregions were related to predominant land cover/use; lakes in ecoregions with large areas of wetland and forest had significantly higher CDOM levels than lakes in agricultural ecoregions. We compared regional lake CDOM levels between two years with strongly contrasting precipitation (close-to-normal precipitation year in 2015 and much wetter conditions with large storm events in 2016). CDOM levels of lakes in agricultural ecoregions tended to decrease between 2015 and 2016, probably because of dilution by rainfall, and 7% of lakes in these areas decreased in a440 by ≥3 m-1. In two ecoregions with high forest and wetlands cover, a440 increased by >3 m-1 in 28 and 31% of the lakes, probably due to enhanced transport of CDOM from forested wetlands. With appropriate model tuning and validation, the approach we describe could be extended to other regions, providing a method for frequent and comprehensive measurements of CDOM, a dynamic and important variable in surface waters.
RESUMEN
The ability of satellites to assess surface water quality indicators such as colored dissolved organic matter (CDOM) suggests that remote sensing could be a useful tool for evaluating water treatability metrics in considering potential drinking water supplies. To explore this possibility, 24 surface water samples were collected throughout Minnesota, USA with wide ranging values of CDOM (a440; 0.41-27.9â¯m-1), dissolved organic carbon (DOC; 5.5-47.6â¯mg/L) and specific ultraviolet absorbance at 254â¯nm (SUVA254; 1.3-5.1â¯L/mg-M). Laboratory experiments were performed to quantify chlorine demand and the formation of two classes of halogenated disinfection byproducts (DBPs), trihalomethanes (THMs) and haloacetic acids (HAAs), using the uniform formation conditions (UFC) test. Chlorine demand and THMUFC were linearly correlated with CDOM (R2â¯=â¯0.97 and 0.91, respectively), indicating that CDOM is a useful predictor of these parameters. On the other hand, data comparing di- and tri-HAAUFC with CDOM were better fit by a logarithmic relationship (R2â¯=â¯0.73 and 0.87, respectively), while mono-HAAUFC was linearly correlated with CDOM (R2â¯=â¯0.46) but only for low-to moderately-colored waters (a440â¯≤â¯11â¯m-1). The correlations relating chlorine demand and DBPUFC values with CDOM were coupled with satellite CDOM assessments to estimate chlorine demand and DBPUFC values for all surface waters larger than 0.05â¯km2 in the state of Minnesota, USA. The resulting maps suggest that only 21.8% of Minnesota lakes would meet both the THM and HAA maximum contaminant levels, but only when pre-disinfection treatment removes 75% of DBP precursors. There are limitations to determining CDOM using satellites for high color surface waters (a440â¯>â¯11â¯m-1), however, leading to underpredicted values for CDOM, chlorine demand, and DBPUFC. Overall, the results demonstrate the potential benefits of satellite remote sensing for assessing potential drinking water sources and water treatability metrics.
Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Desinfección , Minnesota , Tecnología de Sensores Remotos , TrihalometanosRESUMEN
Colored dissolved organic matter (CDOM), a major component of the dissolved organic carbon (DOC) pool in many lakes, is an important controlling factor in lake ecosystem functioning. Absorption coefficients at 440 nm (a440, m-1), a common measure of CDOM, exhibited strong associations with dissolved iron (Fediss) and DOC in 280 lakes of the Upper Great Lakes States (UGLS: Minnesota, Wisconsin, and Michigan), as has been found in Scandinavia and elsewhere. Linear regressions between the three variables on UGLS lake data typically yielded R2 values of 0.6-0.9, suggesting that some underlying common processes influence organic matter and Fediss. Statistical and experimental evidence, however, supports only a minor role for iron contributions to a440 in UGLS lakes. Although both DOC and Fediss were significant variables in linear and log-log regressions on a440, DOC was the stronger predictor; adding Fediss to the linear a440-DOC model improved the R2 only from 0.90 to 0.93. Furthermore, experimental additions of FeIII to colored lake waters had only small effects on a440 (average increase of 0.242 m-1 per 100 µg/L of added FeIII). For 136 visibly stained waters (with a440 > 3.0 m-1), where allochthonous DOM predominates, DOM accounted for 92.3 ± 5.0% of the measured a440 values, and Fediss accounted for the remainder. In 75% of the lakes, Fediss accounted for < 10% of a440, but contributions of 15-30% were observed for 7 river-influenced lakes. Contributions of Fediss in UGLS lakes to specific UV absorbance at 254 nm (SUVA254) generally were also low. Although Fediss accounted for 5-10% of measured SUVA254 in a few samples, on average, 98.1% of the SUVA254 signal was attributable to DOM and only 1.9% to Fediss. DOC predictions from measured a440 were nearly identical to those from a440 corrected to remove Fediss contributions. Overall, variations in Fediss in most UGLS lakes have very small effects on CDOM optical properties, such as a440 and SUVA254, and negligible effects on the accuracy of DOC estimated from a440, data for which can be obtained at broad regional scales by remote sensing methods.
Asunto(s)
Color , Colorantes/análisis , Hierro/farmacología , Lagos/química , Compuestos Orgánicos/análisis , Contaminantes Químicos del Agua/análisis , Carbono/análisis , Ecosistema , Monitoreo del Ambiente , Hierro/química , Michigan , Minnesota , Ríos/química , Solubilidad , WisconsinRESUMEN
Colored dissolved organic matter (CDOM) has been widely studied as part of efforts to improve understanding of the aquatic carbon cycle, by laboratory, in situ, and remote sensing methods. We studied ecoregion-scale differences in CDOM and dissolved organic carbon (DOC) to understand variability in organic matter composition and the use of CDOM as a proxy for DOC. Data from 299 lakes across the U.S. Upper Midwest showed that CDOM, measured as absorptivity at 440â¯nm (a440), correlated strongly with DOC (R2â¯=â¯0.81, nâ¯=â¯412). Colored lakes in the Northern Lakes and Forests (NLF) ecoregion drove this relationship. Lakes in the North Central Hardwood Forests (NCHF) had low color (most had a440â¯<â¯3â¯m-1) and weaker CDOM-DOC relationships (R2â¯=â¯0.47). Spectral slopes and specific ultraviolet absorbance (SUVA), indicated relatively low aromaticity and non-terrestrial DOM sources in low color lakes. Multiple regression analyses that included total dissolved nitrogen (TDN) and CDOM, but not chlorophyll a, improved DOC estimates in low color lakes, suggesting a dominant contribution of non-planktonic sources of low color DOM in these lakes. Our results show that CDOM is a reliable, regional proxy for DOC in lakes where forests and wetlands dominate the landscape and the DOM is primarily terrestrial in origin. Mapping of lake DOC at broad spatial scales by satellite-derived CDOM has lower accuracy in low color lakes.
Asunto(s)
Carbono , Lagos , Ciclo del Carbono , Monitoreo del Ambiente , NitrógenoRESUMEN
A method is described to evaluate two methods of phosphorus (P) management in lakes using aluminum sulfate (alum)--in-lake and tributary (inflow) treatment--and compare the resulting in-lake P levels. For in-lake treatment, a technique is described to calculate the optimum alum dose based on measurement of "mobile P" in lake sediments. Mobile P is defined as loosely sorbed and Fe-P, the fraction of sediment P subject to release under anoxic conditions. A linear relationship (r2 = 0.90) was found between P-release rate and the mobile-P content in sediment cores. Addition of alum to aliquots of sediment showed predictable relationships between (i) alum dose and aluminum-bound P (Al-P) formed and (ii) mobile-P loss and Al-P formation. The decrease in sediment P release that would result from in-lake alum treatment was estimated from the residual mobile P after treatment. A method also is presented to estimate the amount of alum needed to bind potentially mineralizable sediment organic P. For inflow treatment, jar tests with urban runoff in metropolitan St. Paul and Minneapolis, Minnesota (USA) were used to study effects of alum dose on P removal from water. With sufficient mixing, a dose of 8 mg AlL(-1) reduced total P (TP) and soluble reactive P to low levels regardless of pH, TSS, and TOC, but doses Asunto(s)
Compuestos de Alumbre/química
, Agua Dulce/análisis
, Fósforo/análisis
, Contaminantes del Agua/análisis
, Purificación del Agua/métodos
, Compuestos de Alumbre/administración & dosificación
, Sedimentos Geológicos/análisis
, Movimientos del Agua
RESUMEN
Urban nonpoint source pollution is a significant contributor to water quality degradation. Watershed planners need to be able to estimate nonpoint source loads to lakes and streams if they are to plan effective management strategies. To meet this need for the twin cities metropolitan area, a large database of urban and suburban runoff data was compiled. Stormwater runoff loads and concentrations of 10 common constituents (six N and P forms, TSS, VSS, COD, Pb) were characterized, and effects of season and land use were analyzed. Relationships between runoff variables and storm and watershed characteristics were examined. The best regression equation to predict runoff volume for rain events was based on rainfall amount, drainage area, and percent impervious area (R2 = 0.78). Median event-mean concentrations (EMCs) tended to be higher in snowmelt runoff than in rainfall runoff, and significant seasonal differences were found in yields (kg/ha) and EMCs for most constituents. Simple correlations between explanatory variables and stormwater loads and EMCs were weak. Rainfall amount and intensity and drainage area were the most important variables in multiple linear regression models to predict event loads, but uncertainty was high in models developed with the pooled data set. The most accurate models for EMCs generally were found when sites were grouped according to common land use and size.
Asunto(s)
Modelos Teóricos , Lluvia , Urbanización , Contaminantes del Agua/análisis , Abastecimiento de Agua/normas , Predicción , Modelos Lineales , Minnesota , Estaciones del Año , NieveRESUMEN
A procedure that uses Landsat imagery to estimate Secchi disk transparency (SDT) of lakes was developed and applied to approximately 500 lakes with surface areas > 10 ha in the seven-county metropolitan area of Minneapolis and St. Paul, MN, USA, to assess spatial patterns and temporal trends in lake clarity. Thirteen Landsat MSS and TM images over the period 1973-1998 were used for the analysis. Satellite brightness values from lake surfaces were calibrated against available historical data on SDT (n = approximately 20-40) measured nearly contemporaneously with the acquisition date of each image. Calibration regression equations for the late-summer TM images had a range of r2 from 0.72 to 0.93. Regression analysis for three late-summer MSS images yielded r2 values ranging from 0.60 to 0.79. Results indicate that a single late-summer image yields a reliable estimate of regional lake clarity and reasonably accurate estimates of SDT for individual lakes. An analysis of seasonal patterns on a large lake water-quality database was used to develop a model that adjusts synoptic satellite SDT estimates from different dates to a common reference, making them more comparable from year-to-year. Analysis of long-term trends shows that in spite of the large land-use changes within the region over the study period, only 49 (about 10%) of assessed lakes in the region showed significant temporal trends in SDT over the period, and more lakes had increasing SDT (34) than decreasing SDT (15).
Asunto(s)
Diagnóstico por Imagen/métodos , Agua Dulce/química , Comunicaciones por Satélite , Nefelometría y Turbidimetría , Análisis de Regresión , Estaciones del AñoRESUMEN
Distribution coefficients (K(OC)) for Hg2+ binding by IHSS Pahokee peat humic acid (PHA) and humic acids separated from O-horizons and peats in a northern temperate forest were determined using a competitive ligand-exchange method. All measurements were made at low ratios of added Hg2+ to reduced S. The commonly used chelating agents, EGTA and DTPA, were found to be ineffective competitive ligands; thus, we used DL-penicillamine, a synthetic amino acid with a thiol group. Calculated free [Hg2+] at equilibrium is very low, ranging from 10(-26.4) at pH 1.9 to 10(-36.9) at pH 5.8. Corresponding log Koc values ranged from 22.6 to 32.8. The slope of the plot of pH versus log K(OC) was 2.68, suggesting that two or more protons are released when each Hg2+ is bound. This is consistent with binding of Hg2+ to bidentate thiol sites with some participation of a third weak-acid group, presumably a thiol. The 1:2 stoichiometry is consistent with X-ray spectroscopy data for Hg2+ bound to HA and with other pH-dependency results showing release of two protons with the binding of each Hg2+. Our K(OC) values are much greater than indicated by the data from most previous studies.
Asunto(s)
Sustancias Húmicas , Mercurio/química , Contaminantes del Suelo/análisis , Quelantes/química , Ácido Egtácico/química , Cinética , Ácido Pentético/química , Suelo , ÁrbolesRESUMEN
Ion budgets for the two basins of experimentally acidified Little Rock Lake (Vilas County, WI, U.S.A.) indicate that Ca2+, Mg2+, and K+ were released from the bottom sediments to the water column during 1984-1994, and NH4+, NO3-, and SO4(2-) were removed for a net internal alkalinity generation (IAG). Sulfate removal contributed approximately 50% of the IAG in the reference basin, and cation production generated approximately 40%. In-lake processes in the reference basin removed approximately 38% of the sulfate input; 58% was lost to outflow, and 4% remained in the water column. As a result of acid additions that stimulated sulfate reduction and lower pH that enhanced ion exchange, sulfate removal and Ca2+ production were more important for IAG in the treatment basin. During 1984-1994, sulfate removal contributed about 61% of the IAG, and Ca2+ production contributed about half of the IAG from cation production. In the treatment basin, in-lake processes removed about 46% of the total input of sulfate (including acid additions); 36% was lost to outflow and 18% remained in the water column (representing approximately 25% of the added acid). In both basins of LRL, NH4+ consumption roughly balanced NO3- consumption, and net N transformations provided only 3-12% of the IAG. Overall, Na+ and Cl- were conservative in both basins during 1984-1994. Most ion budget components, including calculated internal reaction terms, showed fairly large interannual variations; e.g., ion inputs (dominated by atmospheric deposition) varied by a factor of about two. Over the 10-year period, ANC terms calculated from the budgets as the difference between base cation and acid anion terms agreed well with measured ANC terms for the budget components, indicating that the budgets accounted for all important IAG constituents.
Asunto(s)
Calcio/análisis , Sedimentos Geológicos/química , Agua/química , Lluvia Ácida , Calcio/química , Contaminación Ambiental/prevención & control , Concentración de Iones de Hidrógeno , WisconsinRESUMEN
Mercury (HgT) and methylmercury (MeHg) were measured at 1-2 cm resolution in sediment porewater and sediment cores from Spring Lake in the Marcell Experimental Forest of northern Minnesota. Recent sediment accumulation of HgT was 21.4 microg m(-2) yr(-1) (1990-2000), 2 orders of magnitude greater than the accumulation of MeHg (0.20 microg m(-2) yr(-1)). The highest solid phase concentrations of MeHg were observed persistently at the sediment surface and declined sharply with depth. Porewater profiles showed a small diffusive flux of MeHg from sediment to water (5 ng m(-2) month(-1)). Springtime porewater concentrations of MeHg were relatively low (approximately 0.5 ng L(-1)) and increased by late summer to early fall (1.5-2.2 ng L(-1)), showing distinct peaks roughly correlated with maxima in sulfate reducing activity at 5 and 15 cm. Advective transport carrying MeHg deeper into the sediment was evident in summer and fall. The percent of HgT present as MeHg was highest in the water column above the sediment (10%) and decreased with sediment depth in both the solid and porewater phases. Sediments at this study site are a net sink for MeHg, although diagenetic processes of demethylation and methylation are evident within the lake-sediment environment.