Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Arch Biochem Biophys ; 753: 109915, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307314

RESUMEN

The human ATP-binding cassette (ABC) transporter, ABCG2, is responsible for multidrug resistance in some tumours. Detailed knowledge of its activity is crucial for understanding drug transport and resistance in cancer, and has implications for wider pharmacokinetics. The binding of substrates and inhibitors is a key stage in the transport cycle of ABCG2. Here, we describe a novel binding assay using a high affinity fluorescent inhibitor based on Ko143 and time-resolved Förster resonance energy transfer (TR-FRET) to measure saturation binding to ABCG2. This binding is displaced by Ko143 and other known ABCG2 ligands, and is sensitive to the addition of AMP-PNP, a non-hydrolysable ATP analogue. This assay complements the arsenal of methods for determining drug:ABCG2 interactions and has the possibility of being adaptable for other multidrug pumps.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Neoplasias , Humanos , Resistencia a Antineoplásicos , Transportadoras de Casetes de Unión a ATP/metabolismo , Resistencia a Múltiples Medicamentos , Adenosina Trifosfato , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Proteínas de Neoplasias/metabolismo
2.
J Biol Chem ; 296: 100345, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33515548

RESUMEN

G-protein-coupled receptors (GPCRs) are traditionally known for signaling at the plasma membrane, but they can also signal from endosomes after internalization to control important pathophysiological processes. In spinal neurons, sustained endosomal signaling of the neurokinin 1 receptor (NK1R) mediates nociception, as demonstrated in models of acute and neuropathic pain. An NK1R antagonist, Spantide I (Span), conjugated to cholestanol (Span-Chol), accumulates in endosomes, inhibits endosomal NK1R signaling, and causes prolonged antinociception. However, the extent to which the Chol-anchor influences long-term location and activity is poorly understood. Herein, we used fluorescent correlation spectroscopy and targeted biosensors to characterize Span-Chol over time. The Chol-anchor increased local concentration of probe at the plasma membrane. Over time we observed an increase in NK1R-binding affinity and more potent inhibition of NK1R-mediated calcium signaling. Span-Chol, but not Span, caused a persistent decrease in NK1R recruitment of ß-arrestin and receptor internalization to early endosomes. Using targeted biosensors, we mapped the relative inhibition of NK1R signaling as the receptor moved into the cell. Span selectively inhibited cell surface signaling, whereas Span-Chol partitioned into endosomal membranes and blocked endosomal signaling. In a preclinical model of pain, Span-Chol caused prolonged antinociception (>9 h), which is attributable to a three-pronged mechanism of action: increased local concentration at membranes, a prolonged decrease in NK1R endocytosis, and persistent inhibition of signaling from endosomes. Identifying the mechanisms that contribute to the increased preclinical efficacy of lipid-anchored NK1R antagonists is an important step toward understanding how we can effectively target intracellular GPCRs in disease.


Asunto(s)
Analgésicos/farmacología , Colestanol/farmacología , Antagonistas del Receptor de Neuroquinina-1/farmacología , Dolor/tratamiento farmacológico , Sustancia P/análogos & derivados , Analgésicos/química , Analgésicos/uso terapéutico , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Colestanol/análogos & derivados , Colestanol/uso terapéutico , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Antagonistas del Receptor de Neuroquinina-1/química , Antagonistas del Receptor de Neuroquinina-1/uso terapéutico , Dolor/metabolismo , Manejo del Dolor , Sustancia P/química , Sustancia P/farmacología , Sustancia P/uso terapéutico
3.
FASEB J ; 35(4): e21211, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33710641

RESUMEN

Organization of G protein-coupled receptors at the plasma membrane has been the focus of much recent attention. Advanced microscopy techniques have shown that these receptors can be localized to discrete microdomains and reorganization upon ligand activation is crucial in orchestrating their signaling. Here, we have compared the membrane organization and downstream signaling of a mutant (R108A, R3.50A) of the adenosine A3 receptor (A3 AR) to that of the wild-type receptor. Fluorescence Correlation Spectroscopy (FCS) studies with a fluorescent agonist (ABEA-X-BY630) demonstrated that both wild-type and mutant receptors bind agonist with high affinity but in subsequent downstream signaling assays the R108A mutation abolished agonist-mediated inhibition of cAMP production and ERK phosphorylation. In further FCS studies, both A3 AR and A3 AR R108A underwent similar agonist-induced increases in receptor density and molecular brightness which were accompanied by a decrease in membrane diffusion after agonist treatment. Using bimolecular fluorescence complementation, experiments showed that the R108A mutant retained the ability to recruit ß-arrestin and these receptor/arrestin complexes displayed similar membrane diffusion and organization to that observed with wild-type receptors. These data demonstrate that effective G protein signaling is not a prerequisite for agonist-stimulated ß-arrestin recruitment and membrane reorganization of the A3 AR.


Asunto(s)
Agonistas del Receptor de Adenosina A3/farmacología , Adenosina/análogos & derivados , Compuestos de Boro/farmacología , Proteínas de Unión al GTP/metabolismo , Receptor de Adenosina A3/metabolismo , Adenosina/farmacología , Animales , Arrestina/metabolismo , Células CHO , Cricetulus , Regulación de la Expresión Génica/efectos de los fármacos , Mutación , Unión Proteica , Receptor de Adenosina A3/genética
4.
FASEB J ; 35(4): e21398, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33710675

RESUMEN

The importance of cell phenotype in determining the molecular mechanisms underlying ß2 -adrenoceptor (ß2AR) function has been noted previously when comparing responses in primary cells and recombinant model cell lines. Here, we have generated haplotype-specific SNAP-tagged ß2AR human embryonic stem (ES) cell lines and applied fluorescence correlation spectroscopy (FCS) to study cell surface receptors in progenitor cells and in differentiated fibroblasts and cardiomyocytes. FCS was able to quantify SNAP-tagged ß2AR number and diffusion in both ES-derived cardiomyocytes and CRISPR/Cas9 genome-edited HEK293T cells, where the expression level was too low to detect using standard confocal microscopy. These studies demonstrate the power of FCS in investigating cell surface ß2ARs at the very low expression levels often seen in endogenously expressing cells. Furthermore, the use of ES cell technology in combination with FCS allowed us to demonstrate that cell surface ß2ARs internalize in response to formoterol-stimulation in ES progenitor cells but not following their differentiation into ES-derived fibroblasts. This indicates that the process of agonist-induced receptor internalization is strongly influenced by cell phenotype and this may have important implications for drug treatment with long-acting ß2AR agonists.


Asunto(s)
Células Madre Embrionarias/fisiología , Fibroblastos/fisiología , Miocitos Cardíacos/fisiología , Receptores Adrenérgicos beta 2/metabolismo , Espectrometría de Fluorescencia/métodos , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Diferenciación Celular , Colorantes Fluorescentes/química , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Proteínas de la Membrana , Propranolol/farmacología , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética
5.
Mol Pharmacol ; 100(4): 319-334, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34315812

RESUMEN

The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor and mainstay therapeutic target for the treatment of type 2 diabetes and obesity. Recent reports have highlighted how biased agonism at the GLP-1R affects sustained glucose-stimulated insulin secretion through avoidance of desensitization and downregulation. A number of GLP-1R agonists (GLP-1RAs) feature a fatty acid moiety to prolong their pharmacokinetics via increased albumin binding, but the potential for these chemical changes to influence GLP-1R function has rarely been investigated beyond potency assessments for cAMP. Here, we directly compare the prototypical GLP-1RA exendin-4 with its C-terminally acylated analog, exendin-4-C16. We examine relative propensities of each ligand to recruit and activate G proteins and ß-arrestins, endocytic and postendocytic trafficking profiles, and interactions with model and cellular membranes in HEK293 and HEK293T cells. Both ligands had similar cAMP potency, but exendin-4-C16 showed ∼2.5-fold bias toward G protein recruitment and a ∼60% reduction in ß-arrestin-2 recruitment efficacy compared with exendin-4, as well as reduced GLP-1R endocytosis and preferential targeting toward recycling pathways. These effects were associated with reduced movement of the GLP-1R extracellular domain measured using a conformational biosensor approach and a ∼70% increase in insulin secretion in INS-1 832/3 cells. Interactions with plasma membrane lipids were enhanced by the acyl chain. Exendin-4-C16 showed extensive albumin binding and was highly effective for lowering of blood glucose in mice over at least 72 hours. Our study highlights the importance of a broad approach to the evaluation of GLP-1RA pharmacology. SIGNIFICANCE STATEMENT: Acylation is a common strategy to enhance the pharmacokinetics of peptide-based drugs. This work shows how acylation can also affect various other pharmacological parameters, including biased agonism, receptor trafficking, and interactions with the plasma membrane, which may be therapeutically important.


Asunto(s)
Exenatida/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Incretinas/metabolismo , Transducción de Señal/fisiología , Acilación/efectos de los fármacos , Acilación/fisiología , Animales , Exenatida/farmacología , Células HEK293 , Humanos , Incretinas/farmacología , Secreción de Insulina/efectos de los fármacos , Secreción de Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Transducción de Señal/efectos de los fármacos
6.
J Biol Chem ; 295(36): 12822-12839, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32111735

RESUMEN

A disintegrin and metalloprotease 10 (ADAM10) is a transmembrane protein essential for embryonic development, and its dysregulation underlies disorders such as cancer, Alzheimer's disease, and inflammation. ADAM10 is a "molecular scissor" that proteolytically cleaves the extracellular region from >100 substrates, including Notch, amyloid precursor protein, cadherins, growth factors, and chemokines. ADAM10 has been recently proposed to function as six distinct scissors with different substrates, depending on its association with one of six regulatory tetraspanins, termed TspanC8s. However, it remains unclear to what degree ADAM10 function critically depends on a TspanC8 partner, and a lack of monoclonal antibodies specific for most TspanC8s has hindered investigation of this question. To address this knowledge gap, here we designed an immunogen to generate the first monoclonal antibodies targeting Tspan15, a model TspanC8. The immunogen was created in an ADAM10-knockout mouse cell line stably overexpressing human Tspan15, because we hypothesized that expression in this cell line would expose epitopes that are normally blocked by ADAM10. Following immunization of mice, this immunogen strategy generated four Tspan15 antibodies. Using these antibodies, we show that endogenous Tspan15 and ADAM10 co-localize on the cell surface, that ADAM10 is the principal Tspan15-interacting protein, that endogenous Tspan15 expression requires ADAM10 in cell lines and primary cells, and that a synthetic ADAM10/Tspan15 fusion protein is a functional scissor. Furthermore, two of the four antibodies impaired ADAM10/Tspan15 activity. These findings suggest that Tspan15 directly interacts with ADAM10 in a functional scissor complex.


Asunto(s)
Proteína ADAM10/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Tetraspaninas/metabolismo , Células A549 , Proteína ADAM10/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Células HEK293 , Humanos , Células Jurkat , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Complejos Multiproteicos/genética , Tetraspaninas/genética
7.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809494

RESUMEN

The five members of the mammalian G subfamily of ATP-binding cassette transporters differ greatly in their substrate specificity. Four members of the subfamily are important in lipid transport and the wide substrate specificity of one of the members, ABCG2, is of significance due to its role in multidrug resistance. To explore the origin of substrate selectivity in members 1, 2, 4, 5 and 8 of this subfamily, we have analysed the differences in conservation between members in a multiple sequence alignment of ABCG sequences from mammals. Mapping sets of residues with similar patterns of conservation onto the resolved 3D structure of ABCG2 reveals possible explanations for differences in function, via a connected network of residues from the cytoplasmic to transmembrane domains. In ABCG2, this network of residues may confer extra conformational flexibility, enabling it to transport a wider array of substrates.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/química , Mamíferos/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Modelos Moleculares , Filogenia
8.
Mol Pharmacol ; 96(6): 778-793, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31092552

RESUMEN

G protein-coupled receptors (GPCRs) are regulated by complex molecular mechanisms, both in physiologic and pathologic conditions, and their signaling can be intricate. Many factors influence their signaling behavior, including the type of ligand that activates the GPCR, the presence of interacting partners, the kinetics involved, or their location. The two CXC-type chemokine receptors, CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3), both members of the GPCR superfamily, are important and established therapeutic targets in relation to cancer, human immunodeficiency virus infection, and inflammatory diseases. Therefore, it is crucial to understand how the signaling of these receptors works to be able to specifically target them. In this review, we discuss how the signaling pathways activated by CXCR4 and ACKR3 can vary in different situations. G protein signaling of CXCR4 depends on the cellular context, and discrepancies exist depending on the cell lines used. ACKR3, as an atypical chemokine receptor, is generally reported to not activate G proteins but can broaden its signaling spectrum upon heteromerization with other receptors, such as CXCR4, endothelial growth factor receptor, or the α 1-adrenergic receptor (α 1-AR). Also, CXCR4 forms heteromers with CC chemokine receptor (CCR) 2, CCR5, the Na+/H+ exchanger regulatory factor 1, CXCR3, α 1-AR, and the opioid receptors, which results in differential signaling from that of the monomeric subunits. In addition, CXCR4 is present on membrane rafts but can go into the nucleus during cancer progression, probably acquiring different signaling properties. In this review, we also provide an overview of the currently known critical amino acids involved in CXCR4 and ACKR3 signaling.


Asunto(s)
Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores CXCR/genética , Receptores CXCR/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Animales , Humanos
9.
Purinergic Signal ; 15(2): 139-153, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30919204

RESUMEN

There is a growing interest in understanding the binding kinetics of compounds that bind to G protein-coupled receptors prior to progressing a lead compound into clinical trials. The widely expressed adenosine A3 receptor (A3AR) has been implicated in a range of diseases including immune conditions, and compounds that aim to selectively target this receptor are currently under development for arthritis. Kinetic studies at the A3AR have been performed using a radiolabelled antagonist, but due to the kinetics of this probe, they have been carried out at 10 °C in membrane preparations. In this study, we have developed a live cell NanoBRET ligand binding assay using fluorescent A3AR antagonists to measure kinetic parameters of labelled and unlabelled compounds at the A3AR at physiological temperatures. The kinetic profiles of four fluorescent antagonists were determined in kinetic association assays, and it was found that XAC-ser-tyr-X-BY630 had the longest residence time (RT = 288 ± 62 min) at the A3AR. The association and dissociation rate constants of three antagonists PSB-11, compound 5, and LUF7565 were also determined using two fluorescent ligands (XAC-ser-tyr-X-BY630 or AV039, RT = 6.8 ± 0.8 min) as the labelled probe and compared to those obtained using a radiolabelled antagonist ([3H]PSB-11, RT = 44.6 ± 3.9 min). There was close agreement in the kinetic parameters measured with AV039 and [3H]PSB-11 but significant differences to those obtained using XAC-S-ser-S-tyr-X-BY630. These data indicate that selecting a probe with the appropriate kinetics is important to accurately determine the kinetics of unlabelled ligands with markedly different kinetic profiles.


Asunto(s)
Antagonistas del Receptor de Adenosina A3/farmacocinética , Transferencia Resonante de Energía de Fluorescencia/métodos , Mediciones Luminiscentes , Receptor de Adenosina A3/metabolismo , Células HEK293 , Humanos , Cinética
10.
Biochim Biophys Acta ; 1863(1): 19-29, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26453803

RESUMEN

ABCG2 is one of three human ATP binding cassette (ABC) transporters involved in the export from cells of a chemically and structurally diverse range of compounds. This multidrug efflux capability, together with a broad tissue distribution in the body, means that ABCG2 exerts a range of effects on normal physiology such as kidney urate transport, as well as contributing towards the pharmacokinetic profiles of many exogenous drugs. The primary sequence of ABCG2 contains only half the number of domains required for a functioning ABC transporter and so it must oligomerise in order to function, yet its oligomeric state in intact cell membranes remains uncharacterized. We have analysed ABCG2 in living cell membranes using a combination of fluorescence correlation spectroscopy, photon counting histogram analysis, and stepwise photobleaching to demonstrate a predominantly tetrameric structure for ABCG2 in the presence or absence of transport substrates. These results provide the essential basis for exploring pharmacological manipulation of oligomeric state as a strategy to modulate ABCG2 activity in future selective therapeutics.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Membrana Celular/metabolismo , Riñón/metabolismo , Imagen Molecular , Proteínas de Neoplasias/metabolismo , Multimerización de Proteína/fisiología , Ácido Úrico/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/genética , Transporte Biológico Activo/fisiología , Membrana Celular/genética , Células HEK293 , Humanos , Riñón/citología , Proteínas de Neoplasias/genética , Estructura Cuaternaria de Proteína
11.
FASEB J ; 29(7): 2859-71, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25837585

RESUMEN

At the ß1-adrenoceptor, CGP 12177 potently antagonizes agonist responses at the primary high-affinity catecholamine conformation while also exerting agonist effects of its own through a secondary low-affinity conformation. A recent mutagenesis study identified transmembrane region (TM)4 of the ß1-adrenoceptor as key for this low-affinity conformation. Others suggested that TM4 has a role in ß1-adrenoceptor oligomerization. Here, assessment of the dissociation rate of a fluorescent analog of CGP 12177 [bordifluoropyrromethane-tetramethylrhodamine-(±)CGP 12177 (BODIPY-TMR-CGP)] at the human ß1-adrenoceptor expressed in Chinese hamster ovary cells revealed negative cooperative interactions between 2 distinct ß1-adrenoceptor conformations. The dissociation rate of 3 nM BODIPY-TMR-CGP was 0.09 ± 0.01 min(-1) in the absence of competitor ligands, and this was enhanced 2.2- and 2.1-fold in the presence of 1 µM CGP 12177 and 1 µM propranolol, respectively. These effects on the BODIPY-TMR-CGP dissociation rate were markedly enhanced in ß1-adrenoceptor homodimers constrained by bimolecular fluorescence complementation (9.8- and 9.9-fold for 1 µM CGP 12177 and 1 µM propranolol, respectively) and abolished in ß1-adrenoceptors containing TM4 mutations vital for the second conformation pharmacology. This study suggests that negative cooperativity across a ß1-adrenoceptor homodimer may be responsible for generating the low-affinity pharmacology of the secondary ß1-adrenoceptor conformation.


Asunto(s)
Antagonistas Adrenérgicos beta/metabolismo , Propanolaminas/metabolismo , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/metabolismo , Animales , Sitios de Unión , Compuestos de Boro/metabolismo , Células CHO , Cricetinae , Cricetulus , Ciclopentanos/metabolismo , Humanos , Cinética , Ligandos , Mutagénesis Sitio-Dirigida , Conformación Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Pirroles/metabolismo , Receptores Adrenérgicos beta 1/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
FASEB J ; 28(10): 4211-22, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24970394

RESUMEN

In our previous work, using a fluorescent adenosine-A3 receptor (A3AR) agonist and fluorescence correlation spectroscopy (FCS), we demonstrated high-affinity labeling of the active receptor (R*) conformation. In the current study, we used a fluorescent A3AR antagonist (CA200645) to study the binding characteristics of antagonist-occupied inactive receptor (R) conformations in membrane microdomains of individual cells. FCS analysis of CA200645-occupied A3ARs revealed 2 species, τD2 and τD3, that diffused at 2.29 ± 0.35 and 0.09 ± 0.03 µm(2)/s, respectively. FCS analysis of a green fluorescent protein (GFP)-tagged A3AR exhibited a single diffusing species (0.105 µm(2)/s). The binding of CA200645 to τD3 was antagonized by nanomolar concentrations of the A3 antagonist MRS 1220, but not by the agonist NECA (up to 300 nM), consistent with labeling of R. CA200645 normally dissociated slowly from the A3AR, but inclusion of xanthine amine congener (XAC) or VUF 5455 during washout markedly accelerated the reduction in the number of particles exhibiting τD3 characteristics. It is notable that this effect was accompanied by a significant increase in the number of particles with τD2 diffusion. These data show that FCS analysis of ligand-occupied receptors provides a unique means of monitoring ligand A3AR residence times that are significantly reduced as a consequence of allosteric interaction across the dimer interface


Asunto(s)
Microdominios de Membrana/metabolismo , Receptor de Adenosina A3/metabolismo , Antagonistas del Receptor de Adenosina A3/farmacología , Regulación Alostérica , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Cinética , Unión Proteica , Multimerización de Proteína
13.
EMBO Rep ; 14(8): 726-32, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23817552

RESUMEN

The A3-adenosine receptor (A3AR) has recently emerged as a key regulator of neutrophil behaviour. Using a fluorescent A3AR ligand, we show that A3ARs aggregate in highly polarized immunomodulatory microdomains on human neutrophil membranes. In addition to regulating chemotaxis, A3ARs promote the formation of filipodia-like projections (cytonemes) that can extend up to 100 µm to tether and 'reel in' pathogens. Exposure to bacteria or an A3AR agonist stimulates the formation of these projections and bacterial phagocytosis, whereas an A3AR-selective antagonist inhibits cytoneme formation. Our results shed new light on the behaviour of neutrophils and identify the A3AR as a potential target for modulating their function.


Asunto(s)
Estructuras de la Membrana Celular/ultraestructura , Neutrófilos/ultraestructura , Receptor de Adenosina A3/metabolismo , Estructuras de la Membrana Celular/efectos de los fármacos , Estructuras de la Membrana Celular/metabolismo , Estructuras de la Membrana Celular/microbiología , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Células HL-60 , Interacciones Huésped-Patógeno , Humanos , Ligandos , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Neutrófilos/microbiología , Fagocitosis/efectos de los fármacos , Unión Proteica , Antagonistas de Receptores Purinérgicos P1/farmacología
14.
J Cell Sci ; 125(Pt 4): 869-86, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22399809

RESUMEN

The central and pervasive influence of cAMP on cellular functions underscores the value of stringent control of the organization of adenylyl cyclases (ACs) in the plasma membrane. Biochemical data suggest that ACs reside in membrane rafts and could compartmentalize intermediary scaffolding proteins and associated regulatory elements. However, little is known about the organization or regulation of the dynamic behaviour of ACs in a cellular context. The present study examines these issues, using confocal image analysis of various AC8 constructs, combined with fluorescence recovery after photobleaching and fluorescence correlation spectroscopy. These studies reveal that AC8, through its N-terminus, enhances the cortical actin signal at the plasma membrane; an interaction that was confirmed by GST pull-down and immunoprecipitation experiments. AC8 also associates dynamically with lipid rafts; the direct association of AC8 with sterols was confirmed in Förster resonance energy transfer experiments. Disruption of the actin cytoskeleton and lipid rafts indicates that AC8 tracks along the cytoskeleton in a cholesterol-enriched domain, and the cAMP that it produces contributes to sculpting the actin cytoskeleton. Thus, an adenylyl cyclase is shown not just to act as a scaffold, but also to actively orchestrate its own micro-environment, by associating with the cytoskeleton and controlling the association by producing cAMP, to yield a highly organized signalling hub.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Adenilil Ciclasas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/metabolismo , Adenilil Ciclasas/química , Adenilil Ciclasas/genética , Transporte Biológico/efectos de los fármacos , AMP Cíclico/biosíntesis , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Recuperación de Fluorescencia tras Fotoblanqueo , Células HEK293 , Humanos , Inmunoprecipitación , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Unión Proteica , Transducción de Señal , Espectrometría de Fluorescencia
15.
ACS Med Chem Lett ; 15(1): 143-148, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38229752

RESUMEN

The atypical chemokine receptor 3 (ACKR3) is a receptor that induces cancer progression and metastasis in multiple cell types. Therefore, new chemical tools are required to study the role of ACKR3 in cancer and other diseases. In this study, fluorescent probes, based on a series of small molecule ACKR3 agonists, were synthesized. Three fluorescent probes, which showed specific binding to ACKR3 through a luminescence-based NanoBRET binding assay (pKd ranging from 6.8 to 7.8) are disclosed. Due to their high affinity at the ACKR3, we have shown their application in both competition binding experiments and confocal microscopy studies showing the cellular distribution of this receptor.

16.
Biochem Pharmacol ; 226: 116396, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38942089

RESUMEN

This study introduces (S)-Opto-prop-2, a second-generation photoswitchable ligand designed for precise modulation of ß2-adrenoceptor (ß2AR). Synthesised by incorporating an azobenzene moiety with propranolol, (S)-Opto-prop-2 exhibited a high PSScis (photostationary state for cis isomer) percentage (∼90 %) and a favourable half-life (>10 days), facilitating diverse bioassay measurements. In vitro, the cis-isomer displayed substantially higher ß2AR binding affinity than the trans-isomer (1000-fold), making (S)-Opto-prop-2 one of the best photoswitchable GPCR (G protein-coupled receptor) ligands reported so far. Molecular docking of (S)-Opto-prop-2 in the X-ray structure of propranolol-bound ß2AR followed by site-directed mutagenesis studies, identified D1133.32, N3127.39 and F2896.51 as crucial residues that contribute to ligand-receptor interactions at the molecular level. In vivo efficacy was assessed using a rabbit ocular hypertension model, revealing that the cis isomer mimicked propranolol's effects in reducing intraocular pressure, while the trans isomer was inactive. Dynamic optical modulation of ß2AR by (S)-Opto-prop-2 was demonstrated in two different cAMP bioassays and using live-cell confocal imaging, indicating reversible and dynamic control of ß2AR activity using the new photopharmacology tool. In conclusion, (S)-Opto-prop-2 emerges as a promising photoswitchable ligand for precise and reversible ß2AR modulation with light. The new tool shows superior cis-on binding affinity, one of the largest reported differences in affinity (1000-fold) between its two configurations, in vivo efficacy, and dynamic modulation. This study contributes valuable insights into the evolving field of photopharmacology, offering a potential avenue for targeted therapy in ß2AR-associated pathologies.


Asunto(s)
Receptores Adrenérgicos beta 2 , Animales , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/química , Conejos , Humanos , Simulación del Acoplamiento Molecular/métodos , Células HEK293 , Antagonistas de Receptores Adrenérgicos beta 2/farmacología , Antagonistas de Receptores Adrenérgicos beta 2/química , Antagonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/química , Cricetulus , Masculino , Procesos Fotoquímicos , Células CHO , Propranolol/farmacología , Propranolol/química , Compuestos Azo/química , Compuestos Azo/farmacología
17.
J Med Chem ; 67(14): 12099-12117, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38994645

RESUMEN

The study of protein function and dynamics in their native cellular environment is essential for progressing fundamental science. To overcome the requirement of genetic modification of the protein or the limitations of dissociable fluorescent ligands, ligand-directed (LD) chemistry has most recently emerged as a complementary, bioorthogonal approach for labeling native proteins. Here, we describe the rational design, development, and application of the first ligand-directed chemistry approach for labeling the A1AR in living cells. We pharmacologically demonstrate covalent labeling of A1AR expressed in living cells while the orthosteric binding site remains available. The probes were imaged using confocal microscopy and fluorescence correlation spectroscopy to study A1AR localization and dynamics in living cells. Additionally, the probes allowed visualization of the specific localization of A1ARs endogenously expressed in dorsal root ganglion (DRG) neurons. LD probes developed here hold promise for illuminating ligand-binding, receptor signaling, and trafficking of the A1AR in more physiologically relevant environments.


Asunto(s)
Colorantes Fluorescentes , Receptor de Adenosina A1 , Ligandos , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A1/química , Humanos , Colorantes Fluorescentes/química , Animales , Ganglios Espinales/metabolismo , Ganglios Espinales/citología , Células HEK293 , Neuronas/metabolismo
18.
Biochim Biophys Acta ; 1823(6): 1068-81, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22487268

RESUMEN

Fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analysis are powerful ways to study mobility and stoichiometry of G protein coupled receptor complexes, within microdomains of single living cells. However, relating these properties to molecular mechanisms can be challenging. We investigated the influence of ß-arrestin adaptors and endocytosis mechanisms on plasma membrane diffusion and particle brightness of GFP-tagged neuropeptide Y (NPY) receptors. A novel GFP-based bimolecular fluorescence complementation (BiFC) system also identified Y1 receptor-ß-arrestin complexes. Diffusion co-efficients (D) for Y1 and Y2-GFP receptors in HEK293 cell plasma membranes were 2.22 and 2.15 × 10(-9)cm(2)s(-1) respectively. At a concentration which promoted only Y1 receptor endocytosis, NPY treatment reduced Y1-GFP motility (D 1.48 × 10(-9)cm(2)s(-1)), but did not alter diffusion characteristics of the Y2-GFP receptor. Agonist induced changes in Y1 receptor motility were inhibited by mutations (6A) which prevented ß-arrestin recruitment and internalisation; conversely they became apparent in a Y2 receptor mutant with increased ß-arrestin affinity. NPY treatment also increased Y1 receptor-GFP particle brightness, changes which indicated receptor clustering, and which were abolished by the 6A mutation. The importance of ß-arrestin recruitment for these effects was illustrated by reduced lateral mobility (D 1.20-1.33 × 10(-9)cm(2)s(-1)) of Y1 receptor-ß-arrestin BiFC complexes. Thus NPY-induced changes in Y receptor motility and brightness reflect early events surrounding arrestin dependent endocytosis at the plasma membrane, results supported by a novel combined BiFC/FCS approach to detect the underlying receptor-ß-arrestin signalling complex.


Asunto(s)
Arrestinas/metabolismo , Membrana Celular/metabolismo , Endocitosis , Complejos Multiproteicos/metabolismo , Receptores de Neuropéptido Y/metabolismo , Espectrometría de Fluorescencia/métodos , Difusión , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Imagenología Tridimensional , Proteínas Mutantes/metabolismo , Fotones , Transporte de Proteínas , Receptores de Neuropéptido Y/agonistas , Factores de Tiempo , beta-Arrestinas
19.
Org Biomol Chem ; 11(34): 5673-82, 2013 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-23881285

RESUMEN

Advances in fluorescence-based imaging technologies have helped propel the study of real-time biological readouts and analysis across many different areas. In particular the use of fluorescent ligands as chemical tools to study proteins such as G protein-coupled receptors (GPCRs) has received ongoing interest. Methods to improve the efficient chemical synthesis of fluorescent ligands remain of paramount importance to ensure this area of bioanalysis continues to advance. Here we report conversion of the non-selective GPCR adenosine receptor antagonist Xanthine Amine Congener into higher affinity and more receptor subtype-selective fluorescent antagonists. This was achieved through insertion and optimisation of a dipeptide linker between the adenosine receptor pharmacophore and the fluorophore. Fluorescent probe 27 containing BODIPY 630/650 (pK(D) = 9.12 ± 0.05 [hA3AR]), and BODIPY FL-containing 28 (pK(D) = 7.96 ± 0.09 [hA3AR]) demonstrated clear, displaceable membrane binding using fluorescent confocal microscopy. From in silico analysis of the docked ligand-receptor complexes of 27, we suggest regions of molecular interaction that could account for the observed selectivity of these peptide-linker based fluorescent conjugates. This general approach of converting a non-selective ligand to a selective biological tool could be applied to other ligands of interest.


Asunto(s)
Colorantes Fluorescentes/química , Péptidos/química , Antagonistas de Receptores Purinérgicos P1/química , Animales , Células CHO , Cricetulus , Colorantes Fluorescentes/síntesis química , Humanos , Modelos Moleculares , Estructura Molecular
20.
J Med Chem ; 66(7): 5208-5222, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36944083

RESUMEN

The C-X-C chemokine receptor type 4, or CXCR4, is a chemokine receptor found to promote cancer progression and metastasis of various cancer cell types. To investigate the pharmacology of this receptor, and to further elucidate its role in cancer, novel chemical tools are a necessity. In the present study, using classic medicinal chemistry approaches, small-molecule-based fluorescent probes were designed and synthesized based on previously reported small-molecule antagonists. Here, we report the development of three distinct chemical classes of fluorescent probes that show specific binding to the CXCR4 receptor in a novel fluorescence-based NanoBRET binding assay (pKD ranging 6.6-7.1). Due to their retained affinity at CXCR4, we furthermore report their use in competition binding experiments and confocal microscopy to investigate the pharmacology and cellular distribution of this receptor.


Asunto(s)
Colorantes Fluorescentes , Receptores CXCR4 , Receptores CXCR4/metabolismo , Ligandos , Colorantes Fluorescentes/química , Unión Proteica , Quimiocinas/metabolismo , Quimiocina CXCL12/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA